cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A230653 Numbers k such that tau(k+1) - tau(k) = 3, where tau(k) = the number of divisors of k (A000005).

Original entry on oeis.org

49, 99, 1023, 1681, 1935, 2499, 8649, 9603, 20449, 21903, 23715, 29583, 30975, 38024, 43263, 58563, 60515, 71824, 74528, 110223, 130321, 136899, 145924, 150543, 154449, 165649, 181475, 216224, 224675, 233288, 243049, 256035, 258063, 265225, 294849, 300303
Offset: 1

Views

Author

Jaroslav Krizek, Oct 27 2013

Keywords

Comments

Numbers k such that A051950(k+1) = 3.
Numbers k such that A049820(k) - A049820(k+1) = 2.
k or k+1 is a perfect square. - David A. Corneth, Feb 16 2024

Examples

			99 is in the sequence because tau(100) - tau(99) = 9 - 6 = 3.
		

Crossrefs

Cf. A055927 (numbers n such that tau(n+1) - tau(n) = 1), A230115 (numbers n such that tau(n+1) - tau(n) = 2), A000005.

Programs

  • Mathematica
    Select[ Range[ 50000], DivisorSigma[0, # ] + 3 == DivisorSigma[0, # + 1] &]
    Position[Differences[DivisorSigma[0,Range[300400]]],3]//Flatten (* Harvey P. Dale, Jun 30 2022 *)
  • PARI
    isok(n) = numdiv(n+1) - numdiv(n) == 3; \\ Michel Marcus, Oct 27 2013
    
  • Python
    from sympy import divisor_count as tau
    from itertools import count, islice
    def agen(): # generator of terms, using comment by David A. Corneth
        for m in count(1):
            mm = m*m
            tmm = tau(mm)
            if tmm - tau(mm-1) == 3: yield mm-1
            if tau(mm+1) - tmm == 3: yield mm
    print(list(islice(agen(), 36))) # Michael S. Branicky, Feb 16 2024

Extensions

More terms from Michel Marcus, Oct 27 2013

A230654 Numbers n such that tau(n+1) - tau(n) = 4, where tau(n) = the number of divisors of n (A000005).

Original entry on oeis.org

11, 17, 19, 31, 39, 43, 55, 65, 67, 69, 77, 87, 97, 129, 134, 163, 175, 183, 185, 194, 207, 211, 221, 237, 241, 247, 249, 254, 265, 283, 295, 309, 321, 327, 331, 337, 343, 351, 365, 398, 404, 417, 437, 454, 458, 459, 469, 471, 473, 482, 493, 494, 497, 505, 517
Offset: 1

Views

Author

Jaroslav Krizek, Nov 03 2013

Keywords

Comments

Numbers n such that A051950(n+1) = 4. Numbers n such that A049820(n) - A049820(n+1) = 3. Sequence of starts of first run of n (n>=2) consecutive integers m_1, m_2, ..., m_n such that tau(m_k) - tau(m_k-1) = 4, for all k=n...2: 11, 458, 3013, ... (a(5) > 100000); example for n=4: tau(3013) = 4, tau(3014) = 8, tau(3015) = 12, tau(3016) = 16.

Examples

			19 is in sequence because tau(20) - tau(19) = 6 - 2 = 4.
		

Crossrefs

Cf. A055927 (numbers n such that tau(n+1) - tau(n) = 1), A230115 (numbers n such that tau(n+1) - tau(n) = 2), A230653 (numbers n such that tau(n+1) - tau(n) = 3), A000005.

Programs

  • Mathematica
    Select[ Range[ 50000], DivisorSigma[0, # ] + 4 == DivisorSigma[0, # + 1] &]

A228453 Numbers k such that tau(k+1) - tau(k) = 5, where tau(k) = the number of divisors of k (A000005).

Original entry on oeis.org

35, 169, 289, 529, 961, 1369, 2809, 3135, 4489, 7921, 9409, 10609, 10815, 11881, 12769, 16129, 18495, 18769, 22201, 22801, 26569, 27889, 32041, 33855, 38809, 44521, 49729, 51529, 52441, 53823, 58081, 61503, 69169, 72361, 76729, 78961, 80089, 96721
Offset: 1

Views

Author

Jaroslav Krizek, Nov 03 2013

Keywords

Comments

Numbers k such that A051950(k+1) = 5.
Numbers k such that A049820(k) - A049820(k+1) = 4.
Either k or k+1 is a square. - Amiram Eldar, Apr 17 2024

Examples

			35 is in sequence because tau(36) - tau(35) = 9 - 4 = 5.
		

Crossrefs

Numbers k such that tau(k+1) - tau(k) = m: A055927 (m = 1), A230115 (m = 2), A230653 (m = 3), A230654 (m = 4), this sequence (m = 5).

Programs

  • Mathematica
    Select[ Range[ 50000], DivisorSigma[0, # ] + 5 == DivisorSigma[0, # + 1] &]
  • PARI
    lista(kmax) = {my(d); for(k = 2, kmax, d = numdiv(k^2); if(d == numdiv(k^2-1) + 5, print1(k^2-1, ", ")); if(d == numdiv(k^2+1) - 5, print1(k^2, ", ")));} \\ Amiram Eldar, Apr 17 2024

A227874 Numbers n such that tau(n+1) - tau(n) = -2, where tau(n) = the number of divisors of n (A000005).

Original entry on oeis.org

6, 10, 20, 22, 32, 45, 46, 50, 58, 68, 76, 82, 92, 106, 117, 124, 152, 166, 170, 174, 178, 212, 226, 236, 261, 262, 272, 325, 333, 338, 346, 358, 382, 405, 412, 424, 435, 436, 452, 464, 466, 474, 477, 478, 495, 502, 506, 512, 530, 555, 562, 567, 574, 578, 586
Offset: 1

Views

Author

Jaroslav Krizek, Nov 03 2013

Keywords

Comments

Numbers n such that tau(n) - tau(n+1) = 2. Numbers n such that A051950(n+1) = -2. Numbers n such that A049820(n) - A049820(n+1) = -3.
Sequence of starts of first run of n (n>=2) consecutive integers m_1, m_2, ..., m_n such that tau(m_k) - tau(m_k-1) = -2, for all k=n...2: 6, 45, 1016, ... (a(5) > 100000); example for n=4: tau(1016) = 8, tau(1017) = 6, tau(1018) = 4, tau(1019) = 2.

Examples

			45 is in sequence because tau(46) - tau(45) = 4 - 6 = -2.
		

Crossrefs

Cf. A000005.
Cf. A055927 (numbers n such that tau(n+1) - tau(n) = 1).
Cf. A230115 (numbers n such that tau(n+1) - tau(n) = 2).
Cf. A230653 (numbers n such that tau(n+1) - tau(n) = 3).
Cf. A230654 (numbers n such that tau(n+1) - tau(n) = 4).
Cf. A228453 (numbers n such that tau(n+1) - tau(n) = 5).

Programs

  • Mathematica
    Select[ Range[ 50000], DivisorSigma[0, # ] - 2 == DivisorSigma[0, # + 1] &]

A343018 a(n) is the smallest number m such that tau(m+1) = tau(m) + n.

Original entry on oeis.org

2, 1, 5, 49, 11, 35, 23, 399, 47, 1849, 59, 143, 119, 1599, 167, 575, 179, 1295, 239, 4355, 629, 2303, 359, 899, 959, 9215, 1007, 39999, 719, 20735, 839, 5183, 1799, 46655, 1259, 36863, 1679, 7055, 3023, 986049, 2879, 3599, 6479, 82943, 2519, 193599, 3359, 207935
Offset: 0

Views

Author

Jaroslav Krizek, Apr 02 2021

Keywords

Comments

tau(m) = the number of divisors of m (A000005).
Sequences of numbers m such that tau(m+1) = tau(m) + n for 0 <= n <= 5:
n = 0: 2, 14, 21, 26, 33, 34, 38, 44, 57, 75, 85, 86, 93, ... (A005237).
n = 1: 1, 3, 9, 15, 25, 63, 121, 195, 255, 361, 483, 729, ... (A055927).
n = 2: 5, 7, 13, 27, 37, 51, 61, 62, 73, 74, 91, 115, 123, ... (A230115).
n = 3: 49, 99, 1023, 1681, 1935, 2499, 8649, 9603, 20449, ... (A230653).
n = 4: 11, 17, 19, 31, 39, 43, 55, 65, 67, 69, 77, 87, 97, ... (A230654).
n = 5: 35, 169, 289, 529, 961, 1369, 2809, 3135, 4489, ... (A228453).

Examples

			For n = 3; a(3) = 49 because 49 is the smallest number such that tau(50) = 6 = tau(49) + 3 = 3 + 3.
		

Crossrefs

Programs

  • Magma
    Ax:=func; [Ax(n): n in [0..50]];
    
  • Maple
    N:= 60: # for a(0)..a(N)
    V:= Array(0..N): count:=0: t:= numtheory:-tau(1):
    for m from 1 while count < N+1 do
      s:= numtheory:-tau(m+1); v:= s - t;
      if v >= 0 and v <= N and V[v] = 0 then count:= count+1; V[v]:= m; fi;
      t:= s;
    od:
    convert(V, list); # Robert Israel, Jan 03 2025
  • Mathematica
    d = Differences @ Table[DivisorSigma[0, n], {n, 1, 10^6}]; a[n_] := If[(p = Position[d, n]) != {}, p[[1, 1]], 0]; s = {}; n = 0; While[(a1 = a[n]) > 0, AppendTo[s, a1]; n++]; s (* Amiram Eldar, Apr 03 2021 *)
  • PARI
    a(n) = my(m=1); while (numdiv(m+1) != numdiv(m) + n, m++); m; \\ Michel Marcus, Apr 03 2021
    
  • Python
    from itertools import count, pairwise
    from sympy import divisor_count
    def A343018(n): return next(m+1 for m, t in enumerate(pairwise(map(divisor_count,count(1)))) if t[1] == t[0]+n) # Chai Wah Wu, Jul 25 2022

Formula

a(n) = A086550(n) - 1.
Showing 1-5 of 5 results.