cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A230140 Number of ways to write n = x + y + z with 0 < x <= y <= z such that 6*x-1, 6*y-1, 6*z-1 are among those primes p (terms of A230138) with p + 2 and 2*p - 5 also prime.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 2, 3, 1, 2, 2, 2, 3, 3, 4, 2, 3, 2, 3, 3, 3, 4, 2, 5, 2, 6, 3, 6, 5, 4, 5, 3, 5, 5, 8, 7, 6, 5, 6, 5, 5, 7, 6, 8, 4, 6, 5, 6, 7, 9, 8, 8, 5, 7, 6, 8, 10, 6, 10, 4, 8, 6, 6, 10, 6, 9, 5, 6, 5, 7, 7, 9, 6, 7, 8, 5, 10, 6, 9, 6, 6, 7, 4, 7, 7, 9, 6, 5, 5, 4, 6, 5, 6, 5, 5, 6, 4, 6, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 10 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 2, i.e., 6*n-3 with n > 2 can be expressed as a sum of three terms from A230138. Moreover, for any integer n > 12, there are three distinct positive integers x, y, z with x + y + z = n such that 6*x-1, 6*y-1, 6*z-1 are primes in A230138.
(ii) For each integer n > 12, there are three distinct positive integers x, y, z with x + y + z = n such that 6*x-1, 6*y-1, 6*z-1 are among those primes p with p + 2 and 2*p + 9 also prime.
Note that part (i) of this conjecture implies that there are infinitely many primes in A230138.
Indices k such that a(m)>a(k) for all m>k, are (2, 10, 26, 334, 439, 544, 551, 684, ...). The only sequence which has the first 5 terms within the 3 lines of data is A212067. (Certainly a coincidence.) - M. F. Hasler, Oct 10 2013

Examples

			a(10) = 1 since 10 = 2 + 3 + 5, and the three numbers 6*2-1=11, 6*3-1=17 and 6*5-1=29 are terms of A230138.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=PrimeQ[6n-1]&&PrimeQ[6n+1]&&PrimeQ[12n-7]
    a[n_]:=Sum[If[SQ[i]&&SQ[j]&&SQ[n-i-j],1,0],{i,1,n/3},{j,i,(n-i)/2}]
    Table[a[n],{n,1,100}]
  • PARI
    ip(x)=isprime(6*x-1) && isprime(6*x+1) && isprime(12*x-7); a(n)=sum(x=1,n\3,sum(y=x,ip(x)*(n-x)\2,ip(y) && ip(n-x-y))) \\ - M. F. Hasler, Oct 10 2013

A230141 Number of ways to write n = x + y + z with y <= z such that 6*x-1, 6*y-1, 6*z-1 are terms of A230138 and 6*(y+z)+1 is prime.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 4, 5, 3, 2, 3, 4, 4, 5, 6, 5, 3, 5, 4, 4, 2, 4, 6, 2, 3, 2, 6, 9, 8, 8, 5, 5, 4, 5, 10, 14, 10, 12, 6, 11, 7, 9, 13, 6, 11, 3, 9, 7, 8, 14, 6, 11, 4, 4, 8, 9, 15, 15, 7, 14, 3, 6, 13, 10, 19, 6, 6, 12, 5, 10, 8, 7, 16, 6, 10, 4, 7, 19, 11, 13, 3, 12, 5, 6, 13, 5, 12, 7, 8, 4, 5, 6, 10, 6, 4, 6, 4, 6, 7, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 10 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 2. Also, any integer n > 2 can be written as x + y + z (x, y, z > 0) such that 6*x-1, 6*y-1, 6*z-1 are terms of A230138 and 6*y*z-1 is prime.
This is a further refinement of the conjecture in A230140.
Note that if x + y + z = n then 6*n = (6*x-1) + (6*(y+z)+1). So a(n) > 0 implies Goldbach's conjecture for the even number 6*n.

Examples

			a(10) = 2 since 10 = 3 + 2 + 5 = 5 + 2 + 3, and 6*3-1 = 17, 6*2-1 = 11, 6*5-1 = 29 are terms of A230138, and 6*(2+5)+1 = 43 and 6*(2+3)+1 = 31 are also prime.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=PrimeQ[6n-1]&&PrimeQ[6n+1]&&PrimeQ[12n-7]
    a[n_]:=Sum[If[SQ[i]&&PrimeQ[6(n-i)+1]&&SQ[j]&&SQ[n-i-j],1,0],{i,1,n-2},{j,1,(n-i)/2}]
    Table[a[n],{n,1,100}]

A230223 Primes p such that 3*p-4, 3*p-10, and 3*p-14 are all prime.

Original entry on oeis.org

7, 11, 17, 19, 31, 37, 47, 59, 79, 107, 131, 151, 157, 229, 317, 367, 409, 431, 479, 499, 521, 541, 739, 787, 1031, 1181, 1307, 1381, 1487, 1601, 1697, 1747, 1951, 2551, 2749, 2767, 2917, 3251, 3391, 3449, 3581, 3931, 4217, 4349, 4447, 4567, 4639, 4721, 4909, 4967
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 12 2013

Keywords

Comments

Conjecture: Any even number greater than 35 can be written as a sum of four terms of this sequence.
Primes in the sequence should be sparser than twin primes although this has not been proved.

Examples

			a(1) = 7 since 3*7-4 = 17, 3*7-10 = 11 and 3*7-14 = 7 are prime.
		

Crossrefs

Programs

  • Mathematica
    RQ[n_]:=n>5&&PrimeQ[3n-4]&&PrimeQ[3n-10]&&PrimeQ[3n-14]
    m=0
    Do[If[RQ[Prime[n]],m=m+1;Print[m," ",Prime[n]]],{n,1,1000}]
    Select[Prime[Range[700]],AllTrue[3#-{4,10,14},PrimeQ]&] (* Harvey P. Dale, Sep 29 2023 *)
  • PARI
    is(p)=isprime(p) && isprime(3*p-4) && isprime(3*p-10) && isprime(3*p-14) \\ Charles R Greathouse IV, Oct 12 2013

A230227 Primes p with 3*p - 10 also prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 47, 53, 59, 61, 67, 79, 83, 89, 97, 101, 107, 109, 131, 137, 151, 157, 163, 167, 173, 191, 193, 199, 223, 229, 251, 257, 269, 277, 283, 307, 313, 317, 331, 347, 353, 367, 373, 397, 401, 409
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 12 2013

Keywords

Comments

Conjecture: For any integer n > 4 not equal to 76, we have 2*n = p + q for some terms p and q from the sequence.
This is stronger than Goldbach's conjecture for even numbers.

Examples

			a(1) = 5 since 3*5 - 10 = 5 is prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[p_]:=PQ[p]=p>3&&PrimeQ[3p-10]
    m=0
    Do[If[PQ[Prime[n]],m=m+1;Print[m," ",Prime[n]]],{n,1,80}]
    Select[Prime[Range[100]],PrimeQ[3#-10]&] (* Harvey P. Dale, Jun 28 2015 *)
Showing 1-4 of 4 results.