cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A337754 Least prime p such that 2p+1, 2p+3,..., 2p+2n+1 are not prime.

Original entry on oeis.org

7, 31, 59, 59, 263, 263, 263, 691, 977, 1091, 1487, 1487, 2417, 2797, 4987, 4987, 6427, 9811, 9811, 12739, 12739, 12739, 17033, 17033, 17033, 17033, 17033, 17033, 67261, 77969, 77969, 77969, 77969, 77969, 140717, 140717, 140717, 169019, 169019, 169019, 180331
Offset: 0

Views

Author

Michel Lagneau, Sep 21 2020

Keywords

Examples

			a(1) = 31 because 2*31+1=63 and 2*31+3=65 are not prime.
		

Crossrefs

Cf. A230225.

Programs

  • Maple
    nn:=10^8:
    for n from 1 to 50 do:
    ii:=0:
      for k from 2 to nn while(ii=0)do:
        p:=ithprime(k):jj:=0:
         for i from 1 by 2 to 2*n-1 do:
          if isprime(2*p+i)
           then
           jj:=1:
           else
          fi:
         od:
           if jj=0
            then
            ii:=1: printf(`%d, `,p):
            else
           fi:
         od:
       od:
  • PARI
    isok(p, n) = {forstep(k=1, 2*n+1, 2, if (isprime(2*p+k), return (0));); return(1);}
    a(n) = {my(p=2); while(!isok(p, n), p = nextprime(p+1)); p;} \\ Michel Marcus, Sep 21 2020
    
  • Python
    from sympy import isprime, nextprime
    def a(n, startp=2):
        p = startp
        while any(isprime(2*p+i) for i in range(1, 2*n+2, 2)): p = nextprime(p)
        return p
    print([a(n) for n in range(41)]) # Michael S. Branicky, Jul 31 2021
    
  • Python
    # uses above to produce initial segment faster
    def aupton(nn):
        an, alst = 2, []
        for n in range(nn+1): an = a(n, startp=an); alst.append(an)
        return alst
    print(aupton(40)) # Michael S. Branicky, Jul 31 2021
Showing 1-1 of 1 results.