A230388 a(n) = binomial(11*n+1,n)/(11*n+1).
1, 1, 11, 176, 3311, 68211, 1489488, 33870540, 793542167, 19022318084, 464333035881, 11502251937176, 288417894029200, 7306488667126803, 186719056586568660, 4807757550367267056, 124609430032127192295, 3248403420844673986345
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2008.
- J-C. Aval, Multivariate Fuss-Catalan Numbers, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962, 2014
- Wikipedia, Fuss-Catalan number
Programs
-
Magma
[Binomial(11*n+1,n)/(11*n+1): n in [0..30]]; // Vincenzo Librandi, Jan 01 2014
-
Maple
seq(binomial(11*k+1,k)/(11*k+1),k=0..30); # Robert FERREOL, Apr 01 2015 n:=30:G:=series(RootOf(g = 1+x*g^11, g),x=0,n+1):seq(coeff(G,x,k),k=0..n); # Robert FERREOL, Apr 01 2015
-
Mathematica
Table[Binomial[11 n + 1, n]/(11 n + 1), {n, 0, 30}] (* Vincenzo Librandi, Jan 01 2014 *)
-
PARI
a(n) = binomial(11*n+1,n)/(11*n+1);
-
PARI
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11))+x*O(x^n)); polcoeff(B, n)}
Formula
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, with p=11, r=1.
From Robert FERREOL, Apr 01 2015: (Start)
a(n) = binomial(11*n,n)/(10*n+1) = A062993(n+9, 9).
a(0) = 1; a(n) = Sum_{i1+i2+..i11=n-1} a(i1)*a(i2)*...*a(i11) for n>=1.
(End)
O.g.f.: hypergeometric([1,...,10]/11,[2,...,9,11]/10,(11^11/10^10)*x). For the e.g.f. put an extra 1 = 10/10 into the second part. - Wolfdieter Lang, Feb 05 2024
a(n) ~ (11^11/10^10)^n*sqrt(11/(2*Pi*(10*n)^3)). - Robert A. Russell, Jul 15 2024
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^21). - Seiichi Manyama, Jun 16 2025
Comments