A230600 a(n) = Lucas(2^n - 1).
2, 1, 4, 29, 1364, 3010349, 14662949395604, 347880681146567910619198829, 195816040085094172011386545446645681141059001652009364, 62041768337314169100816125405238438263014895218124648720624536859920496229610874552659773465281966850403949
Offset: 0
Examples
A Pierce expansion of 1/phi^(2^n - 2) = Fibonacci(2^n - 1) - Fibonacci(2^n - 2)*phi to the base phi for n = 1 to 4. n = 1: 1 = phi/1 - phi^2/(1*4) + phi^3/(1*4*29) - phi^4/(1*4*29*1364) + ... n = 2: 1/phi^2 = phi/4 - phi^2/(4*29) + phi^3/(4*29*1364) - phi^4/(4*29*1364*3010349) + ... n = 3: 1/phi^6 = phi/29 - phi^2/(29*1364) + phi^3/(29*1364*3010349) - ... n = 4: 1/phi^14 = phi/1364 - phi^2/(1364*3010349) + ...
Links
- Iain Fox, Table of n, a(n) for n = 0..12
- Iain Fox, Table of n, a(n) for n = 0..24 (terms too large for b-file)
- Eric Weisstein's World of Mathematics, Pierce Expansion
Programs
-
Magma
[Lucas(2^n -1): n in [0..10]]; // G. C. Greubel, Dec 22 2017
-
Mathematica
Table[LucasL[2^n - 1], {n, 0, 10}]
-
PARI
for(n=0,10, print1(fibonacci(2^n) + fibonacci(2^n -2), ", ")) \\ G. C. Greubel, Dec 22 2017
Formula
a(n) = Lucas(2^n - 1) = A000032(2^n-1) = phi^(2^n-1) + (-1/phi)^(2^n-1).
Recurrence equation: a(0) = 2, a(1) = 1 and a(n) = floor(phi*a(n-1)^2) + 4 for n >= 2.
Product {n = 2..k} (1 - 1/a(n)) = 1/2 + Fibonacci(2^k - 1)/(2*Lucas(2^k - 1)).
Product {n >= 2} (1 - 1/a(n)) = (5 + sqrt(5))/10.
Comments