cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A140826 Arithmetic nondivisor means.

Original entry on oeis.org

3, 4, 5, 7, 11, 13, 17, 18, 19, 20, 23, 24, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Ctibor O. Zizka, Jul 17 2008

Keywords

Comments

Numbers n such that A024816(n)/(n-A000005(n)) is an integer.
Numbers n such that A231167(n) = 0. - Jaroslav Krizek, Nov 07 2013
Union of odd primes (A065091) and composites from A230605 (4, 18, 20, 24, 432, 588...). - Jaroslav Krizek, Nov 07 2013

Examples

			n=18: numbers less than n which do not divide n are 4,5,7,8,10,11,12,13,14,15,16,17.
antisigma_1(18) = 4+5+7+8+10+11+12+13+14+15+16+17 = 132.
antisigma_0(18) = 12.
132/12 = 11 which is an integer so n=18 belongs to the sequence.
		

Crossrefs

Programs

  • Maple
    A024816 := proc(n) n*(n+1)/2-numtheory[sigma](n) ; end:
    isA140826 := proc(n) if A024816(n) mod ( n-A000005(n)) = 0 then true; else false; fi; end:
    for n from 3 to 400 do if isA140826(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Dec 13 2008
  • Mathematica
    Select[Range[3, 300], IntegerQ[(#^2 + # - 2 DivisorSigma[1, #])/(2# - 2 DivisorSigma[0, #])]&] (* Jean-François Alcover, May 11 2023 *)
  • PARI
    isok(n) = (nnd = n - numdiv(n)) && !((n*(n+1)/2-sigma(n)) % nnd); \\ Michel Marcus, Nov 09 2013

Formula

Numbers n such that (n*n+n-2*A000203(n))/(2*n-2*A000005(n)) is an integer.

Extensions

Inserted 20 and extended by R. J. Mathar, Dec 13 2008

A231167 a(1) = a(2) = 0, for n>=3: (sum of non-divisors of n) modulo (number of non-divisors of n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 2, 1, 0, 2, 0, 1, 8, 6, 0, 0, 0, 0, 12, 1, 0, 0, 8, 1, 16, 20, 0, 19, 0, 23, 20, 1, 24, 8, 0, 1, 24, 26, 0, 25, 0, 32, 21, 1, 0, 26, 18, 38, 32, 38, 0, 31, 40, 36, 36, 1, 0, 30, 0, 1, 31, 15, 48, 37, 0, 50, 44, 47, 0, 33, 0, 1, 35, 56
Offset: 1

Views

Author

Jaroslav Krizek, Nov 07 2013

Keywords

Comments

a(n) = 0 for n = 1, 2 and numbers from A140826.
a(n) = 1 for numbers of form 2*p (p=prime) from A100484 and other numbers, e.g. 8 and 13456 are only numbers n < 10^5 which are not of form 2*p with a(n) = 1.

Examples

			For n=6, a(6) = A024816(6) mod A049820(6) = 9 mod 2 = 1.
		

Crossrefs

Cf. A054025 (sigma(n) mod tau(n)), A024816, A049820, A024816, A049820, A065091, A230605, A161344.

Programs

  • Mathematica
    ndn[n_]:=Module[{nd=Complement[Range[n],Divisors[n]]},Mod[Total[ nd],Length[ nd]]]; Join[{0,0},Array[ndn,80,3]] (* Harvey P. Dale, Apr 11 2022 *)

Formula

a(n) = A024816(n) mod A049820(n).
Showing 1-2 of 2 results.