cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A233441 a(n) = floor(2^n / n^3).

Original entry on oeis.org

2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 9, 16, 26, 44, 76, 131, 226, 393, 689, 1213, 2147, 3818, 6818, 12228, 22012, 39768, 72084, 131072, 239027, 437102, 801393, 1472896, 2713342, 5009438, 9267786, 17179869, 31906432, 59362467, 110632938, 206519839, 386111079
Offset: 1

Views

Author

Alex Ratushnyak, Dec 09 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Floor[2^#/#^3] &, 50] (* Paolo Xausa, Mar 27 2025 *)
  • Python
    for n in range(1,100):  print(2**n // n**3, end=', ')

Formula

a(n) = floor(A000079(n) / A000578(n)).

A233471 a(n) = 3^n mod n^2.

Original entry on oeis.org

0, 1, 0, 1, 18, 9, 31, 33, 0, 49, 3, 81, 146, 177, 207, 65, 224, 81, 307, 1, 342, 9, 118, 225, 68, 529, 0, 753, 467, 549, 623, 641, 27, 757, 607, 81, 632, 389, 846, 801, 905, 981, 261, 81, 243, 1757, 1554, 2241, 2383, 249, 792, 1329, 851, 729, 1332, 2529, 1737, 2793, 298
Offset: 1

Views

Author

Alex Ratushnyak, Dec 11 2013

Keywords

Examples

			a(4) = 1 because 3^4 = 81, 4^2 = 16 and 81 = 1 mod 80.
a(5) = 18 because 3^5 = 243, 5^2 = 25 and 243 = 18 mod 25.
		

Crossrefs

Programs

  • Maple
    a:= n-> 3&^n mod n^2:
    seq(a(n), n=1..60);  # Alois P. Heinz, Dec 22 2013
  • Mathematica
    Table[Mod[3^n, n^2], {n, 100}] (* Alonso del Arte, Dec 11 2013 *)
    Table[PowerMod[3,n,n^2],{n,100}] (* Harvey P. Dale, Aug 27 2019 *)
  • PARI
    a(n) = lift(Mod(3, n^2)^n); \\ Michel Marcus, May 05 2021
  • Python
    for n in range(1,100):  print(str(3**n % n**2), end=',')
    

Formula

a(n) = A000244(n) mod A000290(n).
Showing 1-2 of 2 results.