A230823 Number of modified skew Dyck paths of semilength n.
1, 1, 2, 6, 20, 73, 281, 1124, 4627, 19474, 83421, 362528, 1594389, 7083078, 31738724, 143281473, 651048571, 2975243348, 13665866849, 63055369522, 292130900461, 1358415528683, 6337824891559, 29660089051015, 139193062791189, 654903798282528, 3088627236146085
Offset: 0
Keywords
Examples
a(0) = 1: the empty path. a(1) = 1: UD. a(2) = 2: UUDD, UDUD. a(3) = 6: UUUDDD, UUDUDD, UUDDUD, UAUDDD, UDUUDD, UDUDUD. a(4) = 20: UUUUDDDD, UUUDUDDD, UUUDDUDD, UUUDDDUD, UUAUDDDD, UUDUUDDD, UUDUDUDD, UUDUDDUD, UUDDUUDD, UUDDUDUD, UAUUDDDD, UAUDUDDD, UAUDDUDD, UAUDDDUD, UDUUUDDD, UDUUDUDD, UDUUDDUD, UDUAUDDD, UDUDUUDD, UDUDUDUD. a(5) = 73: UUUUUDDDDD, UUUUDUDDDD, UUUUDDUDDD, ..., UDUDUAUDDD, UDUDUDUUDD, UDUDUDUDUD.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..600
Programs
-
Maple
b:= proc(x, y, t, n) option remember; `if`(y>n, 0, `if`(n=y, `if`(t=2, 0, 1), b(x+1, y+1, 0, n-1)+ `if`(t<>1 and x>0, b(x-1, y+1, 2, n-1), 0)+ `if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0))) end: a:= n-> b(0$3, 2*n): seq(a(n), n=0..30);
-
Mathematica
b[x_, y_, t_, n_] := b[x, y, t, n] = If[y > n, 0, If[n == y, If[t == 2, 0, 1], b[x+1, y+1, 0, n-1] + If[t != 1 && x > 0, b[x-1, y+1, 2, n-1], 0] + If[t != 2 && y > 0, b[x+1, y-1, 1, n-1], 0]] ]; a[n_] := b[0, 0, 0, 2*n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 16 2013, translated from Maple *)
Formula
a(n) ~ c * 5^n / n^(3/2), where c = 0.27726256768213709977373928535... . - Vaclav Kotesovec, Jul 16 2014
G.f.: 1/(1 - x/(1 - (x + x^2)/(1 - (x + x^2 + x^3)/(1 - (x + x^2 + x^3 + x^4)/(1 - ...))))), a continued fraction (conjecture). - Ilya Gutkovskiy, Jun 08 2017
Comments