A231001 Number of years after which an entire year can have the same calendar, in the Julian calendar.
0, 6, 11, 17, 22, 28, 34, 39, 45, 50, 56, 62, 67, 73, 78, 84, 90, 95, 101, 106, 112, 118, 123, 129, 134, 140, 146, 151, 157, 162, 168, 174, 179, 185, 190, 196, 202, 207, 213, 218, 224, 230, 235, 241, 246, 252, 258, 263, 269, 274, 280, 286, 291, 297, 302, 308, 314, 319, 325
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Time And Date, Repeating Calendar
- Time And Date, Julian Calendar
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,0,0,0,1,-1},{0,6,11,17,22,28},60] (* Harvey P. Dale, Jun 19 2023 *)
-
PARI
for(i=0,420,for(y=0,420,if(((5*(y\4)+(y%4))%7)==((5*((y+i)\4)+((y+i)%4))%7)&&((5*(y\4)+(y%4)-!(y%4))%7)==((5*((y+i)\4)+((y+i)%4)-!((y+i)%4))%7),print1(i", ");break)))
-
PARI
concat(0, Vec(x*(2 + 3*x + 2*x^2)*(3 - 2*x + 3*x^2) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^40))) \\ Colin Barker, Oct 17 2019
Formula
From Colin Barker, Oct 17 2019: (Start)
G.f.: x*(2 + 3*x + 2*x^2)*(3 - 2*x + 3*x^2) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6) for n>5.
(End)
Comments