A237749 The number of possible orderings of the real numbers xi*xj (i <= j), subject to the constraint that x1 > x2 > ... > xn > 0.
1, 1, 1, 2, 10, 114, 2608, 107498, 7325650, 771505180
Offset: 0
Examples
a(3) = 2 because there are 2 possible orderings of the 6 products a1^2, a2^2, a3^2, a1*a2, a1*a3, a2*a3. Specifically, these orderings are: a1^2 > a1a2 > a2^2 > a1a3 > a2a3 > a3^2 and a1^2 > a1a2 > a1a3 > a2^2 > a2a3 > a3^2.
Links
- S. Arunachalam, N. Johnston, and V. Russo, Is separability from spectrum determined by the partial transpose?, arXiv preprint arXiv:1405.5853 [quant-ph], 2014-2015.
- Matthias Beck, Tristram Bogart, and Tu Pham, Enumeration of Golomb Rulers and Acyclic Orientations of Mixed Graphs, arXiv:1110.6154 [math.CO], 2011, Section 5.
- A. España, X. Leoncini, and E. Ugalde, Combinatorics of the paths towards synchronization, arXiv:2205.05948 [math.DS], 2022.
- R. Hildebrand, Positive partial transpose from spectra. Phys. Rev. A, 76 (5) (2007) 052325, [arXiv], arXiv:quant-ph/0502170, 2005.
- Nathaniel Johnston, Counting the possible orderings of pairwise multiplication
- Nathaniel Johnston and Olivia MacLean, Pairwise Completely Positive Matrices and Conjugate Local Diagonal Unitary Invariant Quantum States, arXiv:1807.06897 [quant-ph], 2018.
- Antti Laaksonen, Counting Orderings of Sums
- Steven J. Miller and Carsten Peterson, A geometric perspective on the MSTD question, arXiv:1709.00606 [math.CO], 2017.
- Tu Pham, Enumeration of Golomb Rulers, Master's Thesis (2011) Table 3.1.
Extensions
a(7) copied from Tu Pham by Charles R Greathouse IV, Feb 18 2014
a(8)-a(9) from Antti Laaksonen, Jan 10 2019
Comments