A231187 Decimal expansion of the length ratio (largest diagonal)/side in the regular 7-gon (or heptagon).
2, 2, 4, 6, 9, 7, 9, 6, 0, 3, 7, 1, 7, 4, 6, 7, 0, 6, 1, 0, 5, 0, 0, 0, 9, 7, 6, 8, 0, 0, 8, 4, 7, 9, 6, 2, 1, 2, 6, 4, 5, 4, 9, 4, 6, 1, 7, 9, 2, 8, 0, 4, 2, 1, 0, 7, 3, 1, 0, 9, 8, 8, 7, 8, 1, 9, 3, 7, 0, 7, 3, 0, 4, 9, 1, 2, 9, 7, 4, 5, 6, 9, 1, 5, 1, 8, 8, 5, 0, 1, 4, 6, 5, 3, 1, 7, 0, 7, 4, 3, 3, 3, 4, 1
Offset: 1
Examples
2.24697960371746706105000976800847962126454946179280421073109887819...
Links
- Peter Steinbach, Golden Fields: A Case for the Heptagon, Mathematics Magazine, Vol. 70, No. 1, Feb. 1997.
- I. J. Zucker, G. S. Joyce, Special values of the hypergeometric series II, Math. Proc. Cam. Phil. Soc. 131 (2001) 309 eq. (8.10).
- Index entries for algebraic numbers, degree 3.
Programs
-
Mathematica
First[RealDigits[N[Csc[Pi/14]/2,104]]] (* Stefano Spezia, Jun 26 2022 *)
-
PARI
5/cos(3*Pi/7) \\ Charles R Greathouse IV, Feb 04 2025
-
PARI
polrootsreal(x^3-2*x^2-x+1)[3] \\ Charles R Greathouse IV, Feb 04 2025
Formula
sigma(7) = -1 + (2*cos(Pi/7))^2 = 1/(2*cos(3*Pi/7)).
Equals A116425 -1.
From Geoffrey Caveney, Apr 23 2014: (Start)
sigma(7) = exp(asinh(cos(Pi/7))).
cos(Pi/7) + sqrt(1+cos(Pi/7)^2). (End)
From Peter Bala, Oct 12 2021: (Start)
Minimal polynomial x^3 - 2*x^2 - x + 1.
Equals 2*(cos(3*Pi/7) - cos(6*Pi/7)). The other zeros of the minimal polynomial are 2*(cos(Pi/7) - cos(2*Pi/7)) = A255240 and 2*(cos(5*Pi/7) - cos(10*Pi/7)) = 1 - A160389.
The quadratic mapping z -> z^2 - 2*z cyclically permutes the zeros of the minimal polynomial. The inverse cyclic permutation is given by the mapping z -> 2 + z - z^2.
Equals Product_{n >= 0} (7*n+3)*(7*n+4)/((7*n+1)*(7*n+6)) = 1 + Product_{n >= 0} (7*n+3)*(7*n+4)/((7*n+2)*(7*n+5)) = 1 + A255249 = 1/A255241. (End)
Equals 1/(2*sin(Pi/14)) = 1 + 2*sin(3*Pi/14). - Gary W. Adamson, Jun 25 2022
Equals (2*cos(Pi/7)) * (2*cos(2*Pi/7)) = (i^(2/7) + i^(-2/7)) * (i^(4/7) + i^(-4/7)) = 1 + i^(4/7) + i^(-4/7). - Gary W. Adamson, Jul 16 2022
Equals 2F1(1/7,2/7;1/2;1) [Zucker] - R. J. Mathar, Jun 24 2024
Comments