A262773 A Beatty sequence: a(n)=floor(q*n) where q=A231187.
0, 2, 4, 6, 8, 11, 13, 15, 17, 20, 22, 24, 26, 29, 31, 33, 35, 38, 40, 42, 44, 47, 49, 51, 53, 56, 58, 60, 62, 65, 67, 69, 71, 74, 76, 78, 80, 83, 85, 87, 89, 92, 94, 96, 98, 101, 103, 105, 107, 110, 112, 114, 116, 119, 121, 123, 125, 128, 130, 132, 134, 137, 139
Offset: 0
Keywords
Links
- Peter Steinbach, Golden Fields: A Case for the Heptagon, Mathematics Magazine, Vol. 70, No. 1, Feb. 1997
- Index entries for sequences related to Beatty sequences
Crossrefs
Complement of A262770.
Programs
-
Mathematica
Table[Floor[n/(2 Cos[3 Pi/7])], {n, 0, 106}] (* Michael De Vlieger, Oct 05 2015 *)
-
Octave
q=roots([1,-2,-1,1])(1); a(n)=floor(q*n)
-
PARI
a(n) = floor(n/(2*cos(3*Pi/7))) \\ Michel Marcus, Oct 05 2015
Comments