cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A232625 Denominators of abs(n-8)/(2*n), n >= 1.

Original entry on oeis.org

2, 2, 6, 2, 10, 6, 14, 1, 18, 10, 22, 6, 26, 14, 30, 4, 34, 18, 38, 10, 42, 22, 46, 3, 50, 26, 54, 14, 58, 30, 62, 8, 66, 34, 70, 18, 74, 38, 78, 5, 82, 42, 86, 22, 90, 46, 94, 12, 98, 50, 102, 26, 106, 54, 110, 7, 114, 58, 118, 30, 122, 62, 126, 16, 130, 66
Offset: 1

Views

Author

Wolfdieter Lang, Dec 12 2013

Keywords

Comments

The numerators are given in A231190. See the comments there on 2*sin(Pi*4/n).
2*sin(Pi*4/n) = R(b(n), x) (mod C(b(n), x)), with x = 2*cos(Pi/a(n)) =: rho(a(n)). The integer Chebyshev R and C polynomials are found in A127672 and A187360, respectively. b(n) = A231190(n).
delta(a(n)) = deg(2,n), with delta(k) = A055034(k), is the degree of the algebraic number 2*sin(Pi*4/n) given in A232626.

Crossrefs

Cf. A127672 (R), A187360 (C), A231190 (b), A055034 (delta), A232626 (degree k=2), A106609 (k=1, p), A225975 (k=1, q), A093819 (degree k=1).

Programs

  • Mathematica
    a[n_] := Denominator[(n-8)/(2*n)]; Array[a, 100] (* Amiram Eldar, Nov 09 2024 *)
  • PARI
    a(n) = denominator((n-8)/(2*n)); \\ Amiram Eldar, Nov 09 2024

Formula

a(n) = denominator(abs(n-8)/(2*n)), n >= 1.
a(n) = 2*n/gcd(n-8, 16).
a(n) = 2*n if n is odd; if n is even then a(n) = n if n/2 == 1, 3, 5, 7 (mod 8), a(n) = n/2 if n/2 == 2, 6 (mod 8), a(n) == n/4 if n/2 == 0 (mod 8) and a(n) = n/8 if n == 4 (mod 8).
O.g.f.: x*(2*(1+x^30) + 2*x*(1+x^28) + 6*x^2*(1+x^26) + 2*x^3*(1+x^24) + 10*x^4*(1+x^22) + 6*x^5*(1+x^20) + 14*x^6*(1+x^18) + x^7*(1+x^16) + 18*x^8*(1+x^14) + 10*x^9*(1+x^12) + 22*x^10*(1+x^10) + 6*x^11*(1+x^8) + 26*x^12*(1+x^6) + 14*x^13*(1+x^4) + 30*x^14*(1+x^2) + 4*x^15)/(1-x^16)^2.
Sum_{k=1..n} a(k) ~ (171/256) * n^2. - Amiram Eldar, Nov 09 2024

A232626 Degree of the algebraic number 2*sin(4*Pi/n).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 6, 4, 10, 2, 12, 6, 8, 2, 16, 6, 18, 4, 12, 10, 22, 1, 20, 12, 18, 6, 28, 8, 30, 4, 20, 16, 24, 6, 36, 18, 24, 2, 40, 12, 42, 10, 24, 22, 46, 4, 42, 20, 32, 12, 52, 18, 40, 3, 36, 28, 58, 8, 60, 30, 36, 8, 48, 20, 66, 16, 44, 24, 70, 3, 72, 36, 40
Offset: 1

Views

Author

Wolfdieter Lang, Dec 12 2013

Keywords

Comments

See the comment on A231190 for the formula for 2*sin(Pi*4/n) = 2*cos(Pi*p(2,n)/q(2,n)) with gcd(p(2,n),q(2,n)) = 1, where p(2,n) = A231190(n) and q(2,n) = A232625(n). This shows that 2*sin(Pi*4/n) is an integer in the algebraic number field Q(rho(q(2,n))) of degree a(n) = delta(q(2,n)) with delta(k) = A055034(k).
This degree a(n) is given by I. Niven's Theorem 3.9, pp. 37-38, by Niven(n/gcd(2,n)) with Niven(n) = A093819(n) the degree of 2*sin(2*Pi/n). Note that Niven uses gcd(k, n) = 1 in the derivation, and Niven(4) = 1. See the bisection given in the formula section which is obtained from this.

Examples

			a(1) = A093819(1) = 1; a(4) = phi(2) = 1; a(6) = phi(3) = 2; a(8) = 1; a(9) = A093819(9) = 6.
		

References

  • Ivan Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.

Crossrefs

Programs

  • Mathematica
    f[n_] := Exponent[ MinimalPolynomial[ 2Sin[ 4Pi/n]][x], x]; Array[f, 75] (* Robert G. Wilson v, Jul 28 2014 *)
  • PARI
    a(n) = {my(k = denominator((n-8)/(2*n))); if(k == 1, 1, eulerphi(2*k)/2);} \\ Amiram Eldar, Nov 09 2024

Formula

a(n) = delta(A232625(n)), n >=1, with delta(1) = 1 and delta(k) = phi(2*k)/2 with Euler's totient function phi (A000010). delta(k) = A055034(k).
a(2*k+1) = A093819(2*k+1), k >= 0.
For k >= 1: a(2*k) = A093819(k), that is a(2*k) = 1 if k=4, phi(k) if k odd or k == 2 (mod 4), phi(k)/2 if k == 0 (mod 8), phi(k)/4 if k == 4 (mod 8) (but not k=4).

A367824 Array read by ascending antidiagonals: A(n, k) is the numerator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.

Original entry on oeis.org

1, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 1, 0, -1, -1, 1, 3, 1, -1, -3, -1, 1, 2, 1, 0, -1, -2, -1, 1, 5, 3, 1, -1, -3, -5, -1, 1, 3, 1, 1, 0, -1, -1, -3, -1, 1, 7, 5, 1, 1, -1, -1, -5, -7, -1, 1, 4, 3, 2, 1, 0, -1, -2, -3, -4, -1, 1, 0, 7, 5, 3, 1, -1, -3, -5, -7, -9, -1
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2023

Keywords

Comments

This array generalizes A367727.

Examples

			The array of the fractions begins:
  1,  -1,   -1,   -1,   -1,   -1,    -1,    -1, ...
  1,   0, -1/3, -1/2, -3/5, -2/3,  -5/7,  -3/4, ...
  1, 1/3,    0, -1/5, -1/3, -3/7,  -1/2,  -5/9, ...
  1, 1/2,  1/5,    0, -1/7, -1/4,  -1/3,  -2/5, ...
  1, 3/5,  1/3,  1/7,    0, -1/9,  -1/5, -3/11, ...
  1, 2/3,  3/7,  1/4,  1/9,    0, -1/11,  -1/6, ...
  1, 5/7,  1/2,  1/3,  1/5, 1/11,     0, -1/13, ...
  1, 3/4,  5/9,  2/5, 3/11,  1/6,  1/13,     0, ...
  ...
The array of the numerators begins:
  1, -1, -1, -1, -1, -1, -1, -1, ...
  1,  0, -1, -1, -3, -2, -5, -3, ...
  1,  1,  0, -1, -1, -3, -1, -5, ...
  1,  1,  1,  0, -1, -1, -1, -2, ...
  1,  3,  1,  1,  0, -1, -1, -3, ...
  1,  2,  3,  1,  1,  0, -1, -1, ...
  1,  5,  1,  1,  1,  1,  0, -1, ...
  1,  3,  5,  2,  3,  1,  1,  0, ...
  ...
		

Crossrefs

Cf. A367825 (denominator), A367826 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]=1; A[n_,k_]:=Numerator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

A(1, n) = -A026741(n-1) for n > 0.
A(2, n) = -A060819(n-2) for n > 2.
A(3, n) = -A060789(n-3) for n > 3.
A(4, n) = -A106609(n-4) for n > 3.
A(5, n) = -A106611(n-5) for n > 4.
A(6, n) = -A051724(n-6) for n > 5.
A(7, n) = -A106615(n-7) for n > 6.
A(8, n) = -A106617(n-8) = A231190(n) for n > 7.
A(9, n) = -A106619(n-9) for n > 8.
A(10, n) = -A106612(n-10) for n > 9.

A367825 Array read by ascending antidiagonals: A(n, k) is the denominator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 1, 2, 1, 1, 5, 5, 5, 5, 1, 1, 3, 3, 1, 3, 3, 1, 1, 7, 7, 7, 7, 7, 7, 1, 1, 4, 2, 4, 1, 4, 2, 4, 1, 1, 9, 9, 3, 9, 9, 3, 9, 9, 1, 10, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 4, 6, 12, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2023

Keywords

Comments

This array generalizes A367728.

Examples

			The array of the fractions begins:
  1,  -1,   -1,   -1,   -1,   -1,    -1,    -1, ...
  1,   0, -1/3, -1/2, -3/5, -2/3,  -5/7,  -3/4, ...
  1, 1/3,    0, -1/5, -1/3, -3/7,  -1/2,  -5/9, ...
  1, 1/2,  1/5,    0, -1/7, -1/4,  -1/3,  -2/5, ...
  1, 3/5,  1/3,  1/7,    0, -1/9,  -1/5, -3/11, ...
  1, 2/3,  3/7,  1/4,  1/9,    0, -1/11,  -1/6, ...
  1, 5/7,  1/2,  1/3,  1/5, 1/11,     0, -1/13, ...
  1, 3/4,  5/9,  2/5, 3/11,  1/6,  1/13,     0, ...
  ...
The array of the denominators begins:
  1, 1, 1, 1,  1,  1,  1,  1, ...
  1, 1, 3, 2,  5,  3,  7,  4, ...
  1, 3, 1, 5,  3,  7,  2,  9, ...
  1, 2, 5, 1,  7,  4,  3,  5, ...
  1, 5, 3, 7,  1,  9,  5, 11, ...
  1, 3, 7, 4,  9,  1, 11,  6, ...
  1, 7, 2, 3,  5, 11,  1, 13, ...
  1, 4, 9, 5, 11,  6, 13,  1, ...
  ...
		

Crossrefs

Cf. A367824 (numerator), A367827 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]=1; A[n_,k_]:=Denominator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k,k],{n,0,12},{k,0,n}]//Flatten

Formula

A(1, n) = A026741(n+1).
A(2, n) = A060819(n+2).
A(3, n) = A060789(n+3).
A(4, n) = A106609(n+4).
A(5, n) = A106611(n+5).
A(6, n) = A051724(n+6).
A(7, n) = A106615(n+7).
A(8, n) = A106617(n+8) = A231190(n+16).
A(9, n) = A106619(n+9).
A(10, n) = A106612(n+10).

A232629 Coefficients of the algebraic number 2*sin(4*Pi/n) in the power basis of Q(2*cos(Pi/q(2,n))), with q(2,n) = A232625(n), n >= 1.

Original entry on oeis.org

0, 0, 0, -1, 0, 0, -3, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, -3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 5, 0, -5, 0, 1, 0, 0, 0, 0, 0, 0, 0, -3, 0, 1, 0, 0, 0, -7, 0, 14, 0, -7, 0, 1, 0, 1, 0, 9, 0, -30, 0, 27, 0, -9, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, -5, 0, 1, 0, -11, 0, 55, 0, -77, 0, 44, 0, -11, 0, 1, 0, 0, 0, 0, 0, 0, 0, -3, 0, 1
Offset: 1

Views

Author

Wolfdieter Lang, Dec 17 2013

Keywords

Comments

The length of row n is A232626(n).
In a regular n-gon, n>=2, inscribed in a circle of radius R (in some length units), 2*sin(4*Pi/n) = (S(n)/R)*(D(1,n)/S(n)) = D(1,n)/R, with the side length S(n) and the length of the first (smallest) diagonal D(1,n). For n=2 there is no such diagonal, and one can put D(1,2) = 0. Obviously, D(1,2*m) = S(m), m >= 2.
See a comment on A231190 regarding the pair of sequences p(k,n) and q(k,n), n >= 1, k >= 1. Here k=2 with A231190 and A232625.
See also the k=1 analog A231189 of the present table.
The relevant identity is here 2*sin(Pi*4/n) = 2*cos(Pi*abs(n-8)/(2*n)) = 2*cos(Pi*p(2,n)/q(2,n)). This is R(p(2,n), x) (mod C(q(2,n), x)), with x = 2*cos(Pi/q(2,n)) =: rho(q(2,n)). with the coefficient tables for the polynomials R and C given in A127672 and A187360, respectively. This gives the power base coefficients of 2*sin(Pi*4/n) in the algebraic number field Q(rho(q(2,n))) of degree delta(q(2,n)), with delta(n) = A055034(n), shown in A232626.
If the degree p(2,n) of R(p(2,n), x) is smaller than the degree A232626(n) of C(q(2,n), x) then 2*sin(Pi*4/n) = R(p(2,n), x). Otherwise the (mod C(q(2,n), x)) congruence is needed. This happens for n = 1, 2, 3, 4, 21, 24, 27, 30,...
The power basis of Q(rho(q(2,n))) is <1, rho(q(2,n)), ..., rho(q(2,n))^(delta(q(2,n))-1)>. Therefore the length of row n of this table is delta(q(2,n)) = A232626(n).
The coefficient table for the minimal polynomial of 2*sin(Pi*4/n) is given in A232630.

Examples

			The table a(n,m) begins (the trailing zeros are needed to have the correct degree A232626(n) in Q(rho(q(2,n))))
-----------------------------------------------------------------
n\m 0   1  2   3  4   5  6   7  8   9 10 11 12 13 14 15 16 17 ...
1:  0
2:  0
3:  0  -1
4:  0
5:  0  -3  0   1
6:  0   1
7:  0   1  0   0  0   0
8:  2
9:  0   1  0   0  0   0
10: 0   1  0   0
11: 0  -3  0   1  0   0  0   0  0   0
12: 0   1
13: 0   5  0  -5  0   1  0   0  0   0  0  0
14: 0  -3  0   1  0   0
15: 0  -7  0  14  0  -7  0   1
16: 0   1
17: 0   9  0 -30  0  27  0  -9  0   1  0  0  0  0  0  0
18: 0   5  0  -5  0   1
19: 0 -11  0  55  0 -77  0  44  0 -11  0  1  0  0  0  0  0  0
20: 0  -3  0   1
...
n=1: 2*sin(Pi*4/1) = 0. R(p(2,1), x) = R(7, x) = -7*x + 14*x^3 -7*x^5 + x^7. C(q(2,1), x) = C(2, x) = x, hence R(7, x) (mod C(2, x)) == 0, and
  with A232626(1) = 1, a(1,0) = 0.n=7: p(2,7) = A231190(7) = 1, q(2,7) = A232625(7) = 14. 2*sin(Pi*4/7) = R(1, x) = x = rho(14) := 2*cos(Pi/14). C(14, x) of degree 6 does not apply here. A232626(7) = 6, hence the row n=7 is  0  1  0  0  0  0.
n=9: p(2,9) = 1, q(2,9) = 18. 2*sin(Pi*4/9) = R(1, x) = x = rho(18) = 2*cos(Pi/18). C(18, x) with degree 6 is not needed here. A232626(9) = 6, hence row n=9 is also 0  1  0  0  0  0.
n=8: this row with entry 2 coincides with row n=4 of A231189.
n=17: row length A232626(17) = 16; p(2,17) = 9; C(34, x) has degree 16, therefore the R(9, x) coefficients produce here the first 10 entries for row n=17: 0  9  0 -30  0  27  0 -9  0  1, followed by 6 zeros, and 2*sin(Pi*4/17) = 9*rho(34) - 30*rho(34)^3 + 27*rho(34)^5 - 9*rho(34)^7 + 1*rho(34)^9, with rho(34) = 2*cos(Pi/34).
		

Crossrefs

Cf. A231190 (p), A232625 (q), A127672 (R), A187360 (C), A232626 (degree), A231189 (k=1 case), A232630 (minimal polynomials).

Formula

a(n,m) = [x^m] (R(p(2,n), x) (mod C(q(2,n), x)), n >= 1, m = 0, 1, ..., A232626(n) - 1, where the C and R polynomials are found in A187360 and A127672, respectively. p(2,n) = A231190(n) and q(2,n) = A232625(n). Powers of x = rho(q(2,n)) := 2*cos(Pi/q(2,n)) appear in the table in increasing order.
a(2*l,m) = A231189(l,m), l >= 1, m = 0, 1, ..., (A093819(n)-1).
Showing 1-5 of 5 results.