cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231366 Number of numbers whose sum of non-divisors (A024816) is equal to n.

Original entry on oeis.org

2, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Jaroslav Krizek, Nov 09 2013

Keywords

Comments

a(n) = frequency of values n in A024816(m), where A024816(m) = sum of non-divisors of m = antisigma(m).
From Charles R Greathouse IV, Nov 11 2013: (Start)
So far all n such that a(n) > 1 correspond to members of A067816:
a(0) = 2 from 1, 2;
a(9) = 2 from 5, 6;
a(36844389) = 2 from 8585, 8586;
a(129894940) = 2 from 16119, 16120;
a(446591224981504) = 2 from 29886159, 29886160.
I checked this, and thus Krizek's conjecture below, up to 4*10^19.
(End)

Examples

			a(9) = 2 because there are two numbers m (5, 6) with antisigma(m) = 9.
		

Crossrefs

Cf. A054973 (number of numbers whose divisors sum to n), A231365, A231368, A231367, A231369, A067816.

Programs

  • PARI
    up_to = 105;
    A024816(n) = (n*(n+1)/2-sigma(n));
    A231366list(up_to) = { my(v=vector(1+up_to), u); for(n=1, 2+up_to, if((u = A024816(n))<=up_to, v[1+u]++)); (v); };
    v231366 = A231366list(up_to);
    A231366(n) = v231366[1+n]; \\ Antti Karttunen, Jan 19 2025

Formula

Conjecture: max a(n) = 2.
a(A231368(n)) >= 1, a(A231369(n)) = 0.
a(n) = 0 for such n that A231367(n) = 0, a(n) = 0 if A024816(m) = n has no solution.
a(n) >= 1 for such n that A231367(n) = 1, a(n) >= 1 if A024816(m) = n for any m.
Conjecture: a(n) = 2 iff n is number from A225775 (0, 9, 36844389, 129894940, 446591224981504, …)

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 19 2025