A231429 Number of partitions of 2n into distinct parts < n.
1, 0, 0, 0, 0, 1, 2, 4, 8, 14, 22, 35, 53, 78, 113, 160, 222, 306, 416, 558, 743, 980, 1281, 1665, 2149, 2755, 3514, 4458, 5626, 7070, 8846, 11020, 13680, 16920, 20852, 25618, 31375, 38309, 46649, 56651, 68616, 82908, 99940, 120192, 144238, 172730, 206425
Offset: 0
Keywords
Examples
a(5) = #{4+3+2+1} = 1; a(6) = #{5+4+3, 5+4+2+1} = 2; a(7) = #{6+5+3, 6+5+2+1, 6+4+3+1, 5+4+3+2} = 4; a(8) = #{7+6+3, 7+6+2+1, 7+6+3, 7+5+3+1, 7+4+3+2, 6+5+4+1, 6+5+3+2, 6+4+3+2+1} = 8; a(9) = #{8+7+3, 8+7+2+1, 8+6+4, 8+6+3+1, 8+5+4+1, 8+5+3+2, 8+4+3+2+1, 7+6+5, 7+6+4+1, 7+6+3+2, 7+5+4+2, 7+5+3+2+1, 6+5+4+3, 6+5+4+2+1} = 14.
Crossrefs
A053632 counts compositions by weighted sum.
Programs
-
Haskell
a231429 n = p [1..n-1] (2*n) where p _ 0 = 1 p [] _ = 0 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Total[Accumulate[#]]==3n&]],{n,0,15}] (* Gus Wiseman, Jun 17 2023 *)
Comments