A231430 Number of ternary sequences which contain 000.
0, 0, 0, 1, 5, 21, 81, 295, 1037, 3555, 11961, 39667, 130049, 422403, 1361385, 4359115, 13880129, 43984227, 138795849, 436367131, 1367434577, 4272615603, 13315096089, 41397076939, 128429930465, 397665266595, 1229127726825, 3792875384251, 11686625364785
Offset: 0
Keywords
Examples
For n = 3, the only string is 000. For n = 4, the 5 strings are: 0000,0001,0002,1000,2000. For n = 5, there are: 1 with 5 0's, 12 with 4 0's, and 8 with just 3; total 21.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-4,-4,-6).
Programs
-
Mathematica
t = {0, 0, 0, 1}; Do[AppendTo[t, 3 t[[-1]] + 2*(3^(n - 4) - t[[-4]])], {n, 4, 30}]; t (* T. D. Noe, Nov 11 2013 *) (* or *) nn=28;r=Solve[{s==2x s+2x a+2x b+1,a==x s,b==x a,c==3x c+x b},{s,a,b,c}];CoefficientList[Series[c/.r,{x,0,nn}],x] (* Geoffrey Critzer, Jan 14 2014 *) CoefficientList[Series[x^3/(1-5x+4x^2+4x^3+6x^4),{x,0,40}],x] (* or *) LinearRecurrence[{5,-4,-4,-6},{0,0,0,1},40] (* Harvey P. Dale, Jul 27 2021 *)
Formula
a(n) = 3*a(n-1) + 2* (3^(n-4) - a(n-4)).
G.f.: x^3/(1 - 5*x + 4*x^2 + 4*x^3 +6*x^4). - Geoffrey Critzer, Jan 14 2014
Comments