cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383950 Expansion of 1/sqrt((1-2*x)^3 * (1-6*x)).

Original entry on oeis.org

1, 6, 30, 148, 750, 3924, 21084, 115560, 642582, 3611140, 20455908, 116594328, 667851340, 3840932424, 22164538680, 128269848528, 744150592998, 4326419433060, 25200835078164, 147036927946680, 859181709840804, 5027183713857624, 29450272491511560, 172715082105669552
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/Sqrt((1- 2*x)^3 * (1-6*x)); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 27 2025
  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-2*x)^3*(1-6*x)],{x,0,33}],x] (* Vincenzo Librandi, Aug 27 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-2*x)^3*(1-6*x)))
    

Formula

n*a(n) = (8*n-2)*a(n-1) - 12*n*a(n-2) for n > 1.
a(n) = (1/2)^n * Sum_{k=0..n} 3^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k).
a(n) = Sum_{k=0..n} (-1)^k * 6^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*k,k) * binomial(n+1,n-k).

A383600 Expansion of 1/( (1-x)^3 * (1-9*x) )^(1/4).

Original entry on oeis.org

1, 3, 15, 97, 699, 5313, 41689, 334215, 2721411, 22423737, 186497325, 1562826195, 13178010405, 111700773135, 951026829255, 8128169277897, 69701329848051, 599462375836185, 5169038197383789, 44674793959777443, 386916485124220929, 3357265884164614707
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/( (1-x)^3 * (1-9*x) )^(1/4))); // Vincenzo Librandi, May 05 2025
  • Mathematica
    Table[Sum[(-8)^(k)* Binomial[-1/4,k]* Binomial[n,k],{k,0,n}],{n,0,22}] (* Vincenzo Librandi, May 05 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-8)^k*binomial(-1/4, k)*binomial(n, k));
    

Formula

a(n) = Sum_{k=0..n} (-8)^k * binomial(-1/4,k) * binomial(n,k).
n*a(n) = (10*n-7)*a(n-1) - 9*(n-1)*a(n-2) for n > 1.
a(n) ~ 3^(2*n + 3/2) / (Gamma(1/4) * 2^(9/4) * n^(3/4)). - Vaclav Kotesovec, May 02 2025
a(n) = hypergeom([1/4, -n], [1], -8). - Stefano Spezia, May 05 2025
Showing 1-2 of 2 results.