A307131
Numerator of the expected fraction of occupied places on n-length lattice randomly filled with 2-length segments.
Original entry on oeis.org
1, 2, 5, 4, 37, 52, 349, 338, 11873, 14554, 157567, 466498, 11994551, 41582906, 618626159, 614191052, 7545655031, 92853583996, 1755370057489, 8737266957604, 365468962351379, 2002633668589496, 45904893141293831
Offset: 1
0, 1, 2/3, 5/6, 4/5, 37/45, 52/63, 349/420, 338/405, 11873/14175, ...
-
RecurrenceTable[{f[n] == (2 + 2 (n - 2) f[n - 2] + (n - 1) (n - 2) f[n - 1])/(n (n - 1)),f[0] == 0, f[1] == 0}, f, {n, 2, 100}] // Numerator
A307132
Denominator of the expected fraction of occupied places on n-length lattice randomly filled with 2-length segments.
Original entry on oeis.org
1, 3, 6, 5, 45, 63, 420, 405, 14175, 17325, 187110, 552825, 14189175, 49116375, 729729000, 723647925, 8881133625, 109185701625, 2062396586250, 10257709336875, 428772250281375, 2348038513445625, 53791427762572500, 160789593855515625, 16025362854266390625
Offset: 1
0, 1, 2/3, 5/6, 4/5, 37/45, 52/63, 349/420, 338/405, 11873/14175, ...
-
RecurrenceTable[{f[n] == (2 + 2 (n - 2) f[n - 2] + (n - 1) (n - 2) f[n - 1])/(n (n - 1)), f[0] == 0, f[1] == 0}, f, {n, 2, 100}] // Denominator
A231634
a(n) is the denominator of the probability that n segments of length 2, each placed randomly on a line segment of length 2n, will completely cover the line segment.
Original entry on oeis.org
1, 3, 15, 105, 2835, 31185, 2027025, 91216125, 10854718875, 206239658625, 7795859096025, 4482618980214375, 72512954091703125, 99850337784275203125, 37643577344671751578125, 8168656283793770092453125, 12518528979807790079765625
Offset: 1
1, 2/3, 7/15, 34/105, 638/2835, 4876/31185, 220217/2027025, 6885458/91216125, 569311642/10854718875, 7515775348/206239658625, 197394815194/7795859096025, ...
-
f[g_List, l_] := f[g, l] = Sum[f[g[[;; n]], l] f[g[[n + 1 ;;]], l], {n, Length[g] - 1}]/(Total[l + g] - 2 l + 1);
f[{}] = f[{}, _] = 1;
f[ConstantArray[0, #], 2] & /@ Range[2, 20] // Denominator
-
f=[1]; for(n=2, 25, f=concat(f, sum(k=1, n-1, (f[k]*f[n-k])) / (2*n-3))); f
vector(#f, k, denominator(f[k])) \\ Colin Barker, Jul 24 2014, sequence shifted by 1 index
Showing 1-3 of 3 results.
Comments