A231602 Triangular array read by rows: T(n,k) is the number of rooted labeled trees on n nodes that have exactly k nodes with outdegree = 1, n>=1, 0<=k<=n-1.
1, 0, 2, 3, 0, 6, 4, 36, 0, 24, 65, 80, 360, 0, 120, 306, 1950, 1200, 3600, 0, 720, 4207, 12852, 40950, 16800, 37800, 0, 5040, 38424, 235592, 359856, 764400, 235200, 423360, 0, 40320, 573057, 2766528, 8481312, 8636544, 13759200, 3386880, 5080320, 0, 362880
Offset: 1
Examples
1; 0, 2; 3, 0, 6; 4, 36, 0, 24; 65, 80, 360, 0, 120; 306, 1950, 1200, 3600, 0, 720; 4207, 12852, 40950, 16800, 37800, 0, 5040; 38424, 235592, 359856, 764400, 235200, 423360, 0, 40320; ....0..........0........ ....|........./ \....... ....0........0...0...... .../ \.......|.......... ..0 0......0.......... T(4,1) = 36. Both of these graphs on 4 nodes have exactly 1 node that has outdegree = 1. There are 12 + 24 = 36 labelings.
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Programs
-
Maple
with(combinat): C:= binomial: b:= proc(t, i, u) option remember; `if`(t=0, 1, `if`(i<2, 0, b(t, i-1, u) +add(multinomial(t, t-i*j, i$j) *b(t-i*j, i-1, u-j)*u!/(u-j)!/j!, j=1..t/i))) end: T:= (n, k)-> C(n, k)*C(n-1, k)*k! *b(n-1-k$2, n-k): seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Nov 12 2013
-
Mathematica
nn=8;Table[Table[Drop[Range[0,nn]!CoefficientList[Series[-ProductLog[x/(-1-x+x y)],{x,0,nn}],{x,y}],1][[r,c]],{c,1,r}],{r,1,nn}]//Grid
Formula
E.g.f. satisfies A(x,y) = y*x*A(x,y) + x*( exp(A(x,y)) - A(x,y) ).
Comments