cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231864 Partial sums of the second power of arithmetic derivative function A003415.

Original entry on oeis.org

0, 1, 2, 18, 19, 44, 45, 189, 225, 274, 275, 531, 532, 613, 677, 1701, 1702, 2143, 2144, 2720, 2820, 2989, 2990, 4926, 5026, 5251, 5980, 7004, 7005, 7966, 7967, 14367, 14563, 14924, 15068, 18668, 18669, 19110, 19366, 23990, 23991, 25672, 25673, 27977, 29498
Offset: 1

Views

Author

Giorgio Balzarotti, Nov 14 2013

Keywords

Comments

a(n)-> ~ 0.4*n^3 as n-> oo (note: 1^2+2^2+3^3+4^4+5^4 ...-> ~ 1/3*n^3)
Note: the partial sums of a power of the arithmetic derivatives of the natural numbers tend to infinity as the partial sums of the natural numbers of the same power. In more general sense: sum(D^d(i)^m, i = 1..n) -> k*n^(m+1) as n-> oo where D^d(i) is the derivative of order d th of the natural number i (d may be = 0, i.e. no derivate).

Examples

			(1')^2+(2')^2+(3')^2+(4')^2+(5')^2=0+1+1+16+1=19->a(5)=19.
		

Crossrefs

Programs

  • Maple
    der:=n->n*add(op(2, p)/op(1, p), p=ifactors(n)[2]): seq(add(der(i)^2,i=1..j),j=1..45);
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; Accumulate[Table[dn[n]^2, {n, 100}]] (* T. D. Noe, Nov 20 2013 *)

Formula

a(n) = sum((i')^2, i=1..n) where i'=A003415.