cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231902 Decimal expansion of Pi/4 + log(2)/2.

Original entry on oeis.org

1, 1, 3, 1, 9, 7, 1, 7, 5, 3, 6, 7, 7, 4, 2, 0, 9, 6, 4, 3, 2, 4, 2, 7, 6, 9, 0, 6, 5, 4, 8, 9, 6, 4, 0, 0, 5, 0, 8, 7, 0, 4, 2, 4, 1, 7, 0, 2, 3, 9, 0, 4, 0, 8, 2, 3, 0, 4, 0, 7, 6, 1, 5, 2, 8, 2, 3, 6, 5, 0, 9, 1, 2, 5, 5, 6, 3, 9, 9, 6, 0, 7, 4, 5, 9, 9, 4
Offset: 1

Views

Author

Bruno Berselli, Nov 15 2013

Keywords

Examples

			1.131971753677420964324276906548964005087042417023904082304076152823650...
		

References

  • L. B. W. Jolley, Summation of series, Dover Publications Inc. (New York), 1961, p. 28 (formula 154).
  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.15, p. 269.

Crossrefs

Cf. A003881 (Pi/4), A016655 (10*(log(2)/2)), A072691 (Pi^2/12).
Cf. A006752 (Catalan's constant)
Cf. A196521 (Pi/4-log(2)/2).
Cf. A037800.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); (Pi(R) + 2*Log(2))/4; // G. C. Greubel, Aug 24 2018
  • Mathematica
    RealDigits[Pi/4 + Log[2]/2, 10, 90][[1]]
  • PARI
    default(realprecision, 100); (Pi + 2*log(2))/4 \\ G. C. Greubel, Aug 24 2018
    

Formula

Equals 1 + Sum_{m>=1} -(-1)^m/(2*m*(2*m+1)) = 1 + 1/(2*3) - 1/(4*5) + 1/(6*7) - 1/(8*9) + ... .
From Amiram Eldar, Jul 16 2020: (Start)
Equals Integral_{x=1..oo} arctan(x)/x^2 dx.
Equals 1 + Integral_{x=0..1/2} log(4*x^2 + 1) dx. (End)
From Bernard Schott, Sep 07 2020: (Start)
Equals -Sum_{n>=1} (-1)^(n*(n+1)/2) / n [compare with A196521 formula].
Equals Sum_{n>=0} (32*n^2+40*n+11) / (4*(n+1)*(2*n+1)*(4*n+1)*(4*n+3)). (End)
Equals 1 + Sum_{k>=1} A037800(k)/(k*(k+1)) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021