cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A037800 Number of occurrences of 01 in the binary expansion of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Keywords

Comments

Number of i such that d(i)>d(i-1), where Sum{d(i)*2^i: i=0,1,...,m} is base 2 representation of n.
This is the base-2 up-variation sequence; see A297330. - Clark Kimberling, Jan 18 2017

Crossrefs

Programs

  • Haskell
    a037800 = f 0 . a030308_row where
       f c [_]          = c
       f c (1 : 0 : bs) = f (c + 1) bs
       f c (_ : bs)     = f c bs
    -- Reinhard Zumkeller, Feb 20 2014
    
  • Mathematica
    Table[SequenceCount[IntegerDigits[n,2],{0,1}],{n,0,120}] (* Harvey P. Dale, Aug 10 2023 *)
  • PARI
    a(n) = { if(n == 0, 0, -1 + hammingweight(bitnegimply(n, n>>1))) };  \\ Gheorghe Coserea, Aug 31 2015

Formula

a(2n) = a(n), a(2n+1) = a(n) + [n is even]. - Ralf Stephan, Aug 21 2003
G.f.: 1/(1-x) * Sum_{k>=0} t^5/(1+t)/(1+t^2) where t=x^2^k. - Ralf Stephan, Sep 10 2003
a(n) = A069010(n) - 1, n>0. - Ralf Stephan, Sep 10 2003
Sum_{n>=1} a(n)/(n*(n+1)) = log(2)/2 + Pi/4 - 1 = A231902 - 1 (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021

A196521 Decimal expansion of Pi/4-log(2)/2.

Original entry on oeis.org

4, 3, 8, 8, 2, 4, 5, 7, 3, 1, 1, 7, 4, 7, 5, 6, 5, 4, 9, 0, 7, 0, 4, 4, 7, 8, 5, 0, 9, 0, 7, 8, 7, 4, 3, 7, 0, 1, 1, 5, 4, 2, 2, 8, 2, 6, 6, 3, 6, 4, 8, 8, 2, 8, 1, 8, 3, 3, 9, 6, 1, 4, 3, 3, 3, 0, 2, 5, 7, 2, 9, 0, 5, 8, 6
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

Examples

			0.438824573117475654907044785090787437011542282663648828183396143330257...
		

References

  • L. B. W. Jolley, Summation of series, Dover Publications Inc., New York, 1961, p. 14 (eq. 72).

Crossrefs

Cf. A003881, A016655 (10*log(2)/2), A033264.
Cf. A231902 (Pi/4+log(2)/2), A342316.

Programs

Formula

Equals 1 - 1/2 - 1/3 + 1/4 + 1/5 - ....
Equals Sum_{n>=0} 2/((4*n+2)*(4*n+3)). - Peter Luschny, Dec 06 2013
Equals Sum_{n>=1} (-1)^(n+1)/((2*n-1)*(2*n)). - Robert FERREOL, Dec 14 2015
Equals Integral_{x=0..1} (arctan(x)) dx = Integral_{x=0..Pi/4} (x / cos(x)^2) dx = Integral_{x=0..1/sqrt(2)} (arcsin(x)/(1-x^2)^(3/2)) dx. - Robert FERREOL, Dec 14 2015
Equals Integral_{x>=0} (exp(x) - 1)/(exp(2*x) + 1) dx. - Peter Bala, Nov 01 2019
From Bernard Schott, Sep 07 2020: (Start)
Equals Sum_{n>=1} (-1)^(n*(n-1)/2) / n [compare with A231902 formula].
Equals Sum_{n>=0} (8*n+5) / (4*(n+1)*(2*n+1)*(4*n+1)*(4*n+3)). (End)
Equals Sum_{k>=1} A033264(k)/(k*(k+1)) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021
From Peter Bala, Mar 04 2025: (Start)
Equals (1/2) * A342316.
Equals Integral_{x = 0..1} x/(x^2 - 2*x + 2) = Integral_{x = 0..1} x*(1 + x)/(2 - x^2*(1 - x)) dx.
Equals (5/2)*Sum_{n >= 1} 1/(n*binomial(3*n, n)*2^n). The first 10 terms of the series gives the approximate value 0.43882457311(68...), correct to 11 decimal places. (End)

A339799 Decimal expansion of Sum_{m>=1} (-1)^floor(sqrt(m)) / m.

Original entry on oeis.org

1, 2, 9, 4, 0, 8, 1, 2, 2, 1, 8, 8, 3, 0, 9, 1, 0, 7, 6, 3, 0, 3, 8, 2, 1, 7, 1, 8, 3, 5, 6, 7, 3, 1, 2, 5, 0, 5, 0, 1, 1, 2, 2, 5, 9, 5, 3, 9, 9, 2, 0, 4, 3, 0, 2, 2, 7, 6, 5, 9, 2, 3, 3, 9, 5, 2, 7, 5, 5, 1, 7, 1, 2, 7, 9, 3, 8, 5, 1, 5, 7, 1, 2, 0, 9, 0, 3, 6, 2, 6, 1, 8, 4, 8, 6, 1, 4, 2, 7, 8, 9, 6, 0, 8, 2
Offset: 1

Views

Author

Bernard Schott, Dec 17 2020

Keywords

Comments

When grouped by negative and positive packs = - (1+1/2+1/3) + (1/4+1/5+1/6+1/7+1/8) - (1/9+...+1/15) + (1/16+...+1/24) +...+ (-1)^k (1/k^2 +...+ 1/((k+1)^2-1)) + ...
Sum_{m>=1} (-1)^floor(sqrt(m)) / m^q is convergent iff q > 1/2.

Examples

			-1.2940812218830910763038217183567312505011225953992043022765923395275517127938...
		

References

  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.3.35, p. 287.
  • E. Ramis , C. Deschamps, J. Odoux, Analyse 2, Exercices avec solutions, Classes Préparatoires aux Grandes Ecoles Scientifiques, Masson, Paris, 1985, Exercice 1. 1.14, pp. 12-13.

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^n*(Psi(n^2 + 2*n + 1) - Psi(n^2)), n = 1 .. infinity), 120); # Vaclav Kotesovec, Dec 18 2020
  • PARI
    sumalt(k=1, (-1)^k * (psi(1 + 2*k + k^2) - psi(k^2))) \\ Vaclav Kotesovec, Dec 18 2020

Formula

Equals Sum_{m>=1} (-1)^floor(sqrt(m)) / m.
Equals Sum_{m>=1} (-1)^m * Sum_{k=m^2..(m+1)^2-1} 1/k.
Equals Sum_{m>=1} (-1)^m * (digamma((m+1)^2) - digamma(m^2)).

Extensions

More terms from Vaclav Kotesovec, Dec 18 2020
Showing 1-3 of 3 results.