cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A231967 Squarefree numbers (A005117) of the form p*q*r with prime factors p, q, r with q = 2*p + 1 and r = 2*q + 1.

Original entry on oeis.org

110, 1265, 11891, 568301, 5719229, 46203659, 371436119, 1057570169, 2978731439, 8475105539, 8777935031, 14865764009, 22397944469, 24460553171, 26008879181, 27621202391, 47549400491, 53960155829, 54994829321, 57639193331, 119010782819, 157361958899
Offset: 1

Views

Author

Jaroslav Krizek, Nov 16 2013

Keywords

Comments

Squarefree numbers of the form p*q*r, where p < q < r = primes with q = 2*p + 1 and r = 2*q + 1; that is, r = 4*p + 3.

Examples

			5719229 = 89*179*359, 179 = 2*89 + 1, 359 = 2*179 + 1.
		

Crossrefs

Cf. A005117, A000040, A231968, A231969, A231966. Cf. A007700 (first member of a prime triple in a 2p+1 progression).

Programs

  • Mathematica
    sfQ[n_]:=Module[{q=2n+1,r},r=2q+1;AllTrue[{q,r},PrimeQ]&& SquareFreeQ[ n*q*r]]; 3#+10#^2+8#^3&/@Select[Prime[Range[400]],sfQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 26 2016 *)

A231969 a(n) = the smallest squarefree number (A005117) with n prime factors in a 2p+1 progression.

Original entry on oeis.org

2, 10, 110, 2530, 118910, 17036047229140531, 4713753689937227789548410467592773787730621935419, 4754361703029497628070972207349674154455369685904736544199583856401, 17434718204270642890620908753958444038404912529730635812020757976125828120134034469
Offset: 1

Views

Author

Jaroslav Krizek, Nov 16 2013

Keywords

Comments

Smallest squarefree numbers with n >= 2 prime divisors of the form p_1 * p_2 * … * p_n, where p_1 < p_2 < … < p_k = primes with p_k = 2 * p_(k-1) + 1.

Examples

			17036047229140531 = 89*179*359*719*1439*2879, where 179 = 2*89 + 1, 359 = 2*179 + 1, 719 = 2*359 + 1, 1439 = 2*719 + 1, 2879 = 2*1439 + 1.
		

Crossrefs

A231968 Squarefree numbers (A005117) of the form p*q*r*s with prime factors p, q, r, s with q = 2*p + 1, r = 2*q + 1 and s = 2*r + 1.

Original entry on oeis.org

2530, 59455, 4112125651, 66487065301, 1069364586601, 4313828719351, 146264252084551, 252626415665851, 3398860950259501, 10045301361318901, 110736954977078251
Offset: 1

Views

Author

Jaroslav Krizek, Nov 18 2013

Keywords

Examples

			4112125651 = 89*179*359*719; 179 = 2*89 + 1; 359 = 2*179 + 1, 719 = 2*359 + 1.
		

Crossrefs

A367576 Semiprimes p*q such that 2*p divides q-1.

Original entry on oeis.org

10, 21, 26, 34, 39, 55, 57, 58, 74, 82, 93, 106, 111, 122, 129, 146, 155, 178, 183, 194, 201, 202, 203, 205, 218, 219, 226, 237, 253, 274, 291, 298, 301, 305, 309, 314, 327, 346, 355, 362, 381, 386, 394, 417, 453, 458, 466, 471, 482, 489, 497, 505, 514, 538
Offset: 1

Views

Author

Jon E. Schoenfield, Nov 24 2023

Keywords

Comments

These terms and their squarefree proper multiples are the squarefree numbers that never appear as terms in A367566.

Examples

			10 is a term: 10 = 2*5, and 2*2 | 5 - 1.
33 is not a term: 33 = 3*11, but 2*3 does not divide 11 - 1.
		

Crossrefs

Subsequence of A006881.
Showing 1-4 of 4 results.