A232097 a(n) = least k such that 1+2+3+...+k (k-th triangular number) is a multiple of n!; a(n) = least k such that A232096(k) >= n.
1, 3, 3, 15, 15, 224, 224, 4095, 76544, 512000, 9511424, 20916224, 410572799, 672358400, 2985984000, 1004293914624, 1004293914624, 78942076928000, 610877575397375, 83179139563520000, 490473044848410624, 6878928869130239999, 185974097225789210624, 1708887984313466880000, 68817755280574852890624
Offset: 1
Keywords
Examples
a(5) = 15 as binomial(15 + 1, 2) = 120 is the smallest binomial that is divisible by 5! = 120. - _David A. Corneth_, Mar 29 2021
Programs
-
PARI
a(n) = { my(p = 2*n!, f = factor(p), res = oo); for(i = 2^(#f~-1), 2^#f~-1, b = binary(i); pr = prod(j = 1, #f~, f[j,1]^(b[j]*f[j, 2])); ipr = p/pr; for(j = -1, 0, c = lift(chinese(Mod(-1-j, ipr), Mod(j, pr))); if(c > 0, res = min(res, c)))); res } \\ David A. Corneth, Mar 29 2021
-
Scheme
(define (A232097 n) (let ((increment (* 2 (A060818 n)))) (let loop ((k increment)) (cond ((>= (A232096 (- k 1)) n) (- k 1)) ((>= (A232096 k) n) k) (else (loop (+ k increment))))))) ;; Alternative, very naive and slow version: (define (A232097v2 n) (let loop ((k 1)) (if (>= (A232096 k) n) k (loop (+ 1 k)))))
Comments