A232274 Integer areas A of the integer-sided triangles such that the length of the inradius and the circumradius are both a perfect square.
168, 2688, 13608, 43008, 105000, 108000, 217728, 403368, 688128, 1102248, 1680000, 1728000
Offset: 1
Examples
a(1) = 168 because, for (a,b,c) = (14, 30, 40) => s= (14 + 30 + 40)/2 = 42, and A = sqrt(42*(42-14)*(42-30)*(42-40)) = sqrt(28224) = 168; R = abc/4A = 14*30*40/(4*168) = 25; r = A/s = 168/42 = 4.
Links
- Mohammad K. Azarian, Solution of problem 125: Circumradius and Inradius, Math Horizons, Vol. 16, No. 2 (Nov. 2008), p. 32.
- Eric W. Weisstein, MathWorld: Circumradius
- Eric W. Weisstein, MathWorld: Inradius
Programs
-
Mathematica
nn=2000;Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s (s-a)(s-b)(s-c);If[0
Comments