cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232329 Integer areas A of the integer-sided triangles such that the product of the inradius and the circumradius is a square.

Original entry on oeis.org

42, 168, 378, 672, 1050, 1512, 2058, 2088, 2688, 3000, 3402, 4200, 5082, 6048, 6960, 7098, 8232, 8352, 9450, 10752, 12000, 12138, 13608, 15162, 16800, 18522, 18792, 20328, 22218, 24192, 26250, 27000, 27840, 28392, 30618, 31416, 32928, 33408, 35322, 36000, 37800, 40362
Offset: 1

Views

Author

Michel Lagneau, Nov 22 2013

Keywords

Comments

The areas of the primitive triangles of sides (a, b, c) and inradius, circumradius equals respectively to r and R are 42, 3000,... The sides of the nonprimitive triangles are of the form (a*k, b*k, c*k) with r’ = r*k and R’=R*k where r’, R’ are respectively the inradius and the circumradius of the nonprimitive triangles. The areas A’ of the nonprimitive triangles are A’ = A*k^2. The set {A016850} (numbers (5n)^2) is included in the set of the products r*R (see the table below).
The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. The inradius r is given by r = A/s and the circumradius is given by R = abc/4A.
The product r*R is given by r*R = abc/2(a+b+c).
The following table gives the first values (A, a, b, c, r, R, r*R).
-----------------------------------------------------
| A | a | b | c | r | R | r*R |
-----------------------------------------------------
| 42 | 7 | 15 | 20 | 2 | 25/2 | 5^2 |
| 168 | 14 | 30 | 40 | 4 | 25 | 10^2 |
| 378 | 21 | 45 | 60 | 6 | 75/2 | 15^2 |
| 672 | 28 | 60 | 80 | 8 | 50 | 20^2 |
| 1050 | 35 | 75 | 100 | 10 | 125/2 | 25^2 |
| 1512 | 42 | 90 | 120 | 12 | 75 | 30^2 |
| 2058 | 49 | 105 | 140 | 14 | 175/2 | 35^2 |
| 2688 | 56 | 120 | 160 | 16 | 100 | 40^2 |
| 3000 | 80 | 85 | 85 | 24 | 289/6 | 34^2 |
| 3402 | 63 | 135 | 180 | 18 | 225/2 | 45^2 |
| 4200 | 70 | 150 | 200 | 20 | 125 | 50^2 |
| 5082 | 77 | 165 | 220 | 22 | 275/2 | 55^2 |
| 6048 | 84 | 180 | 240 | 24 | 150 | 60^2 |
| 6960 | 58 | 300 | 338 | 20 | 845/4 | 65^2 |
| 7098 | 91 | 195 | 260 | 26 | 325/2 | 65^2 |
....................................................

Examples

			a(1) = 42 because, for (a,b,c) = (7, 15, 20):
  the semiperimeter s = (7+15+20)/2 =21, and
  A = sqrt(21*(21-7)*(21-15)*(21-20)) = 42
  R = abc/4A = 7*15*20/(4*42) = 25/2
  r = A/s = 42/21 = 2, hence r*R = 25 is a square.
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32.

Crossrefs

Programs

  • Mathematica
    nn=800;lst={};Do[s=(a+b+c)/2;rr=a*b*c/(2*(a+b+c))
    ;If[IntegerQ[s],area2=s(s-a)(s-b)(s-c);If[0
    				
  • PARI
    lista(nn)=lst=[]; for (a = 1, nn, for (b=1, a, for (c=1, b, s=(a+b+c)/2; rr=a*b*c/(2*(a+b+c)); if ((type(s) == "t_INT") && (type(rr) == "t_INT"), area2=s*(s-a)*(s-b)*(s-c); if ((0Michel Marcus, Jun 09 2015
    
  • PARI
    {for(a=20,10000,forstep(b=a,2,-1,forstep(c=min(b,a+b-1),a-b+1,-1,if((a+b+c)%2<1,s=(a+b+c)/2;if(issquare(s*(s-a)*(s-b)*(s-c),&A),
    if((a*b*c)%(2*(a+b+c))<1&&if(issquare(a*b*c/(2*(a+b+c)),&d),
    print([A,a,b,c,s,d]))))))))} \\ Faster version used for afile. Zak Seidov, Jun 06 2015

Extensions

Missing term 33408 added by Zak Seidov, Jun 08 2015