A232329 Integer areas A of the integer-sided triangles such that the product of the inradius and the circumradius is a square.
42, 168, 378, 672, 1050, 1512, 2058, 2088, 2688, 3000, 3402, 4200, 5082, 6048, 6960, 7098, 8232, 8352, 9450, 10752, 12000, 12138, 13608, 15162, 16800, 18522, 18792, 20328, 22218, 24192, 26250, 27000, 27840, 28392, 30618, 31416, 32928, 33408, 35322, 36000, 37800, 40362
Offset: 1
Examples
a(1) = 42 because, for (a,b,c) = (7, 15, 20): the semiperimeter s = (7+15+20)/2 =21, and A = sqrt(21*(21-7)*(21-15)*(21-20)) = 42 R = abc/4A = 7*15*20/(4*42) = 25/2 r = A/s = 42/21 = 2, hence r*R = 25 is a square.
References
- Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32.
Links
- Zak Seidov, Table of n, a(n) for n = 1..100
- Zak Seidov, Table of 814 values of area A, sides a>=b>=c, semiprime s, and sqrt(Rr), in the order of increasing "a" from 20 up to 10000.
- Mohammad K. Azarian, Solution to Problem S125: Circumradius and Inradius, Math Horizons, Vol. 16, Issue 2, November 2008, p. 32.
- Eric Weisstein's World of Mathematics, Circumradius
- Eric Weisstein's World of Mathematics, Inradius
Programs
-
Mathematica
nn=800;lst={};Do[s=(a+b+c)/2;rr=a*b*c/(2*(a+b+c)) ;If[IntegerQ[s],area2=s(s-a)(s-b)(s-c);If[0
-
PARI
lista(nn)=lst=[]; for (a = 1, nn, for (b=1, a, for (c=1, b, s=(a+b+c)/2; rr=a*b*c/(2*(a+b+c)); if ((type(s) == "t_INT") && (type(rr) == "t_INT"), area2=s*(s-a)*(s-b)*(s-c); if ((0
Michel Marcus, Jun 09 2015 -
PARI
{for(a=20,10000,forstep(b=a,2,-1,forstep(c=min(b,a+b-1),a-b+1,-1,if((a+b+c)%2<1,s=(a+b+c)/2;if(issquare(s*(s-a)*(s-b)*(s-c),&A), if((a*b*c)%(2*(a+b+c))<1&&if(issquare(a*b*c/(2*(a+b+c)),&d), print([A,a,b,c,s,d]))))))))} \\ Faster version used for afile. Zak Seidov, Jun 06 2015
Extensions
Missing term 33408 added by Zak Seidov, Jun 08 2015
Comments