A232623 Number of partitions of 2*n into parts with multiplicity <= n.
1, 1, 4, 9, 19, 37, 70, 124, 216, 363, 597, 960, 1519, 2359, 3617, 5469, 8173, 12079, 17680, 25630, 36848, 52547, 74383, 104556, 146018, 202651, 279631, 383719, 523813, 711502, 961902, 1294552, 1734788, 2315171, 3077592, 4075658, 5377900, 7071523, 9267454
Offset: 0
Keywords
Examples
a(1) = 1: [2]. a(2) = 4: [2,1,1], [2,2], [3,1], [4]. a(3) = 9: [2,2,1,1], [2,2,2], [3,1,1,1], [3,2,1], [3,3], [4,1,1], [4,2], [5,1], [6]. a(4) = 19: [2,2,1,1,1,1], [2,2,2,1,1], [2,2,2,2], [3,2,1,1,1], [3,2,2,1], [3,3,1,1], [3,3,2], [4,1,1,1,1], [4,2,1,1], [4,2,2], [4,3,1], [4,4], [5,1,1,1], [5,2,1], [5,3], [6,1,1], [6,2], [7,1], [8].
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i>n, 0, add(b(n-i*j, i+1, min(k, iquo(n-i*j, i+1))), j=0..min(n/i, k)))) end: a:= n-> b(2*n, 1, n): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i>n, 0, Sum[b[n-i*j, i+1, Min[k, Quotient[n-i*j, i+1]]], {j, 0, Min[n/i, k]}]]]; a[n_] := b[2*n, 1, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *) A232623[n_] := PartitionsP[2*n] - PartitionsP[n - 1]; Array[A232623, 50, 0] (* Paolo Xausa, Jul 17 2025 *)
-
PARI
a(n) = numbpart(2*n) - numbpart(n-1); \\ Michel Marcus, Jul 13 2025
Formula
a(n) = A061199(n,2*n).
a(n) ~ exp(2*Pi*sqrt(n/3))/(8*n*sqrt(3)). - Vaclav Kotesovec, Nov 27 2013