cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232623 Number of partitions of 2*n into parts with multiplicity <= n.

Original entry on oeis.org

1, 1, 4, 9, 19, 37, 70, 124, 216, 363, 597, 960, 1519, 2359, 3617, 5469, 8173, 12079, 17680, 25630, 36848, 52547, 74383, 104556, 146018, 202651, 279631, 383719, 523813, 711502, 961902, 1294552, 1734788, 2315171, 3077592, 4075658, 5377900, 7071523, 9267454
Offset: 0

Views

Author

Alois P. Heinz, Nov 27 2013

Keywords

Examples

			a(1) = 1: [2].
a(2) = 4: [2,1,1], [2,2], [3,1], [4].
a(3) = 9: [2,2,1,1], [2,2,2], [3,1,1,1], [3,2,1], [3,3], [4,1,1], [4,2], [5,1], [6].
a(4) = 19: [2,2,1,1,1,1], [2,2,2,1,1], [2,2,2,2], [3,2,1,1,1], [3,2,2,1], [3,3,1,1], [3,3,2], [4,1,1,1,1], [4,2,1,1], [4,2,2], [4,3,1], [4,4], [5,1,1,1], [5,2,1], [5,3], [6,1,1], [6,2], [7,1], [8].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i>n, 0, add(b(n-i*j, i+1, min(k,
           iquo(n-i*j, i+1))), j=0..min(n/i, k))))
        end:
    a:= n-> b(2*n, 1, n):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i>n, 0, Sum[b[n-i*j, i+1, Min[k, Quotient[n-i*j, i+1]]], {j, 0, Min[n/i, k]}]]]; a[n_] := b[2*n, 1, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
    A232623[n_] := PartitionsP[2*n] - PartitionsP[n - 1];
    Array[A232623, 50, 0] (* Paolo Xausa, Jul 17 2025 *)
  • PARI
    a(n) = numbpart(2*n) - numbpart(n-1); \\ Michel Marcus, Jul 13 2025

Formula

a(n) = A061199(n,2*n).
a(n) ~ exp(2*Pi*sqrt(n/3))/(8*n*sqrt(3)). - Vaclav Kotesovec, Nov 27 2013
a(n) = A000041(2*n) - A000041(n-1). - Alan Michael Gómez Calderón, Jul 12 2025