A232735 Decimal expansion of the real part of I^(1/7), or cos(Pi/14).
9, 7, 4, 9, 2, 7, 9, 1, 2, 1, 8, 1, 8, 2, 3, 6, 0, 7, 0, 1, 8, 1, 3, 1, 6, 8, 2, 9, 9, 3, 9, 3, 1, 2, 1, 7, 2, 3, 2, 7, 8, 5, 8, 0, 0, 6, 1, 9, 9, 9, 7, 4, 3, 7, 6, 4, 8, 0, 7, 9, 5, 7, 5, 0, 8, 7, 6, 4, 5, 9, 3, 1, 6, 3, 4, 4, 0, 3, 7, 9, 3, 7, 0, 0, 1, 1, 2, 4, 5, 8, 1, 2, 0, 7, 3, 6, 9, 2, 5, 1, 6, 4, 0, 1, 4
Offset: 0
Examples
0.974927912181823607018131682993931217232785800619997437648...
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..1000
- A. Arman, A. Bondarenko, and A. Prymak, Convex bodies of constant width with exponential illumination number, arXiv:2304.10418 [math.MG], 2023.
- Index entries for algebraic numbers, degree 6
Crossrefs
Programs
-
Magma
R:= RealField(100); Cos(Pi(R)/14); // G. C. Greubel, Sep 19 2022
-
Mathematica
RealDigits[Cos[Pi/14],10,120][[1]] (* Harvey P. Dale, Dec 15 2018 *)
-
SageMath
numerical_approx(cos(pi/14), digits=120) # G. C. Greubel, Sep 19 2022
Formula
2*this^2 -1 = A073052. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/14,1/14;1/2;1) . - R. J. Mathar, Aug 31 2025
Comments