cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232735 Decimal expansion of the real part of I^(1/7), or cos(Pi/14).

Original entry on oeis.org

9, 7, 4, 9, 2, 7, 9, 1, 2, 1, 8, 1, 8, 2, 3, 6, 0, 7, 0, 1, 8, 1, 3, 1, 6, 8, 2, 9, 9, 3, 9, 3, 1, 2, 1, 7, 2, 3, 2, 7, 8, 5, 8, 0, 0, 6, 1, 9, 9, 9, 7, 4, 3, 7, 6, 4, 8, 0, 7, 9, 5, 7, 5, 0, 8, 7, 6, 4, 5, 9, 3, 1, 6, 3, 4, 4, 0, 3, 7, 9, 3, 7, 0, 0, 1, 1, 2, 4, 5, 8, 1, 2, 0, 7, 3, 6, 9, 2, 5, 1, 6, 4, 0, 1, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding imaginary part is in A232736.
Root of the equation -7 + 56*x^2 - 112*x^4 + 64*x^6 = 0. - Vaclav Kotesovec, Apr 04 2021

Examples

			0.974927912181823607018131682993931217232785800619997437648...
		

Crossrefs

Cf. A232736 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232737 (real(I^(1/8))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).

Programs

  • Magma
    R:= RealField(100); Cos(Pi(R)/14); // G. C. Greubel, Sep 19 2022
    
  • Mathematica
    RealDigits[Cos[Pi/14],10,120][[1]] (* Harvey P. Dale, Dec 15 2018 *)
  • SageMath
    numerical_approx(cos(pi/14), digits=120) # G. C. Greubel, Sep 19 2022

Formula

2*this^2 -1 = A073052. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/14,1/14;1/2;1) . - R. J. Mathar, Aug 31 2025