A331025 Products of terms of A232803.
1, 3, 4, 9, 5, 12, 6, 27, 16, 15, 7, 36, 8, 18, 20, 81, 10, 48, 11, 45, 24, 21, 13, 108, 25, 24, 64, 54, 14, 60, 17, 243, 28, 30, 30, 144, 19, 33, 32, 135, 22, 72, 23, 63, 80, 39, 26, 324, 36, 75, 40, 72, 29, 192, 35, 162, 44, 42, 31, 180, 34, 51, 96, 729
Offset: 1
Keywords
Examples
In the natural numbers sequence, a(15)=prime(2)*prime(3). If we use the terms of A232803 as prime factors, then prime(2)=4 and prime(3)=5. So, a(15) will be 4*5 = 20.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Robert Dougherty-Bliss, The Number 2 Does Not Exist and other p-removed primes
Crossrefs
Cf. A232803.
Programs
-
Mathematica
With[{s = Select[Range[37], And[# != 2, Or[Log2[#] == 3, PrimeQ@#, PrimeQ[#/2]]] &]}, Array[Times @@ Map[If[#[[1]] == 1, 1, # /. {p_, e_} :> s[[PrimePi@ p]]^e] &, FactorInteger[#]] &, Prime@ Length@ s]] (* Michael De Vlieger, Aug 21 2020 *)
-
PARI
isp(n) = (isprime(n) && (n%2)) || (n==8) || (!(n%2) && isprime(n/2)); \\ A232803 lista(nn) = {my(vall = [1..nn]); my(vp = select(x->isp(x), vall)); for (n=2, nn, my(f=factor(n)); for (k=1, #f~, f[k,1] = vp[primepi(f[k,1])]); vall[n] = factorback(f);); vall;} \\ Michel Marcus, Sep 14 2020
Comments