A232990 Period 5: repeat [1,0,0,1,0].
1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0
Offset: 0
References
- Andrews, George E., q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra. CBMS Regional Conference Series in Mathematics, 66. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. xii+130 pp. ISBN: 0-8218-0716-1 MR0858826 (88b:11063). See p. 105.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
Programs
-
Magma
/* By definition: */ &cat [[1,0,0,1,0]: n in [0..20]]; // Bruno Berselli, Feb 18 2015
-
Magma
[(((n+1) mod 5) mod 3) mod 2: n in [0..100]]; // Vincenzo Librandi, Feb 18 2015
-
Maple
A232990:=n->2 + floor(n/5) - ceil(n/5) + floor((n-3)/5) - ceil((n-3)/5); # Wesley Ivan Hurt, Mar 13 2014
-
Mathematica
Table[2 + Floor[n/5] - Ceiling[n/5] + Floor[(n - 3)/5] - Ceiling[(n - 3)/5], {n, 0, 100}] (* Wesley Ivan Hurt, Mar 13 2014 *)
-
PARI
Vec(-(x+1)*(x^2-x+1)/((x-1)*(x^4+x^3+x^2+x+1)) + O(x^100)) \\ Colin Barker, Mar 14 2014
-
PARI
a(n)=((2*n-2)%5)\3 \\ Charles R Greathouse IV, Apr 30 2015
Formula
a(n) = A198517(n+2).
a(n) = 2 + floor(n/5) - ceiling(n/5) + floor((n - 3)/5) - ceiling((n - 3)/5). - Wesley Ivan Hurt, Mar 13 2014
G.f.: -(x + 1)*(x^2 - x + 1)/((x - 1)*(x^4 + x^3 + x^2 + x + 1)). - Colin Barker, Mar 14 2014
a(n) = floor(((2*n - 2) mod 5)/3). - Wesley Ivan Hurt, Apr 30 2015
a(n) = (2/5)*(1 + cos(2*(n-3)*Pi/5) + cos(4*(n-3)*Pi/5) + cos(2*n*Pi/5) + cos(4*n*Pi/5)). - Wesley Ivan Hurt, Sep 26 2018
Comments