A233036 The maximum number of I-tetrominoes that can be packed into an n X n array of squares when rotation is allowed.
0, 0, 0, 4, 6, 8, 12, 16, 20, 24, 30, 36, 42, 48, 56, 64, 72, 80, 90, 100, 110, 120, 132, 144, 156, 168, 182, 196, 210, 224, 240, 256, 272, 288, 306, 324, 342, 360, 380, 400, 420, 440, 462, 484, 506, 528, 552, 576, 600, 624, 650, 676, 702, 728, 756, 784, 812, 840, 870, 900, 930, 960, 992, 1024, 1056
Offset: 1
Links
- N. G. de Bruijn, "Filling boxes with bricks", The American Mathematical Monthly 76 (1969), 37-40.
- Robert Israel, Illustration of initial terms
- Wikipedia, Tetromino
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Crossrefs
Cf. A233035.
Programs
-
Maple
0$3, seq(op([4*k^2, 2*k*(2*k+1),4*k*(k+1),(2*k+1)*(2*k+2)]),k=1..20);# Robert Israel, Oct 15 2015
-
Mathematica
CoefficientList[Series[2 x^3/((1 + x) (1 + x^2) (1 - x)^3) - 2 x^3, {x, 0, 100}], x] (* Vincenzo Librandi, Oct 15 2015 *) LinearRecurrence[{2,-1,0,1,-2,1},{0,0,0,4,6,8,12,16,20},70] (* Harvey P. Dale, Dec 16 2018 *)
Formula
From Robert Israel, Oct 15 2015: (Start)
a(4*k) = 4*k^2.
a(2*k+1) = k*(k+1) for k >= 2.
a(4*k+2) = 4*k*(k+1).
G.f.: 2*x^3/((1 + x)*(1 + x^2)*(1 - x)^3) - 2*x^3. (End)
Apparently a(n) = A182568(n+2) for n > 3. - Georg Fischer, Oct 14 2018
Extensions
Corrected by Robert Israel, Oct 15 2015
Comments