A233035 a(n) = n * floor(n/4).
0, 0, 0, 4, 5, 6, 7, 16, 18, 20, 22, 36, 39, 42, 45, 64, 68, 72, 76, 100, 105, 110, 115, 144, 150, 156, 162, 196, 203, 210, 217, 256, 264, 272, 280, 324, 333, 342, 351, 400, 410, 420, 430, 484, 495, 506, 517, 576, 588, 600, 612, 676, 689, 702, 715, 784, 798, 812, 826, 900, 915, 930, 945, 1024, 1040
Offset: 1
Links
- Kival Ngaokrajang, Illustration of initial terms
- Wikipedia, Tetromino
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1).
Programs
-
Mathematica
Table[n*Floor[n/4],{n,80}] (* or *) LinearRecurrence[{1,0,0,2,-2,0,0,-1,1},{0,0,0,4,5,6,7,16,18},80] (* Harvey P. Dale, Aug 22 2020 *)
-
PARI
a(n) = n * floor(n/4); \\ Joerg Arndt, Dec 08 2013
Formula
a(n) = (n^2 - n*(n mod 4))/4.
G.f.: (x^7 + x^6 + x^5 + x^4 + 4*x^3)/((1-x)*(1-x^4)^2). - Ralf Stephan, Dec 08 2013
Comments