cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A233035 a(n) = n * floor(n/4).

Original entry on oeis.org

0, 0, 0, 4, 5, 6, 7, 16, 18, 20, 22, 36, 39, 42, 45, 64, 68, 72, 76, 100, 105, 110, 115, 144, 150, 156, 162, 196, 203, 210, 217, 256, 264, 272, 280, 324, 333, 342, 351, 400, 410, 420, 430, 484, 495, 506, 517, 576, 588, 600, 612, 676, 689, 702, 715, 784, 798, 812, 826, 900, 915, 930, 945, 1024, 1040
Offset: 1

Views

Author

Kival Ngaokrajang, Dec 03 2013

Keywords

Comments

The maximum number of I patterns tetrominos that can be packed into an n X n array of squares with rotation is prohibited.
u(n) = n*(n mod 4), where u(n) is total number of squares left after packing I patterns into n X n squares.
a(n) = A132028(n) for 4 <= n <= 31.

Crossrefs

Programs

  • Mathematica
    Table[n*Floor[n/4],{n,80}] (* or *) LinearRecurrence[{1,0,0,2,-2,0,0,-1,1},{0,0,0,4,5,6,7,16,18},80] (* Harvey P. Dale, Aug 22 2020 *)
  • PARI
    a(n) = n * floor(n/4); \\ Joerg Arndt, Dec 08 2013

Formula

a(n) = (n^2 - n*(n mod 4))/4.
G.f.: (x^7 + x^6 + x^5 + x^4 + 4*x^3)/((1-x)*(1-x^4)^2). - Ralf Stephan, Dec 08 2013

A233735 G.f.: x^3*(x^21 - x^20 - x^11 + x^10 + x^9 - x^8 + x^6 - x^5 + x^3 + x^2 - x + 1) / ((1-x^5) * (1-x)^2).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 6, 8, 10, 13, 16, 20, 25, 29, 34, 39, 45, 52, 58, 65, 72, 80, 88, 96, 105, 114, 124, 134, 144, 155, 166, 178, 190, 202, 215, 228, 242, 256, 270, 285, 300, 316, 332, 348, 365, 382, 400, 418, 436, 455, 474, 494, 514, 534
Offset: 0

Views

Author

Kival Ngaokrajang, Dec 15 2013

Keywords

Comments

The second differences repeat with period 1,0,1,0,0 for n >= 20.
a(n) is a lower bound on A085577(n-2). The Ngaokrajang link shows arrangements of a(n) Greek crosses in an n X n grid. Note that a(11)=16, whereas A085577(9)=17, so the bound is not always tight. - N. J. A. Sloane, Apr 19 2015

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^3*(x^21 - x^20 - x^11 + x^10 + x^9 - x^8 + x^6 - x^5 + x^3 +x^2 - x + 1)/((1 - x^5)*(1 - x)^2), {x, 0, 50}], x] (* G. C. Greubel, Jan 08 2018 *)
  • PARI
    x='x+O('x^50); Vec(x^3*(x^21 - x^20 - x^11 + x^10 + x^9 - x^8 + x^6 - x^5 + x^3 +x^2 - x + 1)/((1 - x^5)*(1 - x)^2)) \\ G. C. Greubel, Jan 08 2018

Extensions

Entry revised by N. J. A. Sloane, Apr 19 2015. The new definition is a g.f. found by Ralf Stephan on Dec 17 2013. The old definition was wrong.

A241893 The total number of rectangles appearing in the Thue-Morse sequence logical matrices (1, 0 version) after n stages.

Original entry on oeis.org

0, 0, 0, 8, 28, 120, 460, 1848, 7308, 29240, 116620, 466488, 1864588, 7458360, 29827980, 119311928, 477225868, 1908903480, 7635526540, 30542106168, 122168075148, 488672300600, 1954687804300
Offset: 0

Views

Author

Kival Ngaokrajang, May 01 2014

Keywords

Comments

a(n) is the total number of non-isolated "1s" (consecutive 1s on 2 rows, 1 column or 1 row, 2 columns) that appear as rectangles in the Thue-Morse sequence (another version starts with 1) logical matrices after n stages. See links for more details.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4*x^3*(-2 + x + 8*x^2)/((x - 1)*(4*x - 1)*(2*x + 1)*(2*x - 1)*(1 + x)), {x, 0, 50}], x] (* G. C. Greubel, Sep 29 2017 *)
  • PARI
    {a0=0;a=0;b=1;print1(a0,", ",a,", "); for (n=2,50, if(Mod(n,2)==0, a = 2*(a*2-(4*b-4)) + 4*b; b=b*4-2, a=a*4-8); if(Mod(n,2)==0, print1(a-4,", "),print1(a,", ")))}

Formula

a(n) = A233036(A005578(n+1)).
G.f.: 4*x^3*(-2+x+8*x^2) / ( (x-1)*(4*x-1)*(2*x+1)*(2*x-1)*(1+x) ). - R. J. Mathar, May 04 2014
a(n) = (3*2^n+2*4^n-(-1)^n*(2^n+12)-28)/18, n>0. - R. J. Mathar, May 04 2014
Showing 1-3 of 3 results.