cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A242669 a(n) = n*floor(n/3).

Original entry on oeis.org

0, 0, 0, 3, 4, 5, 12, 14, 16, 27, 30, 33, 48, 52, 56, 75, 80, 85, 108, 114, 120, 147, 154, 161, 192, 200, 208, 243, 252, 261, 300, 310, 320, 363, 374, 385, 432, 444, 456, 507, 520, 533, 588, 602, 616, 675, 690, 705, 768, 784, 800, 867, 884, 901, 972, 990
Offset: 0

Views

Author

Bruno Berselli, Jul 01 2014

Keywords

Comments

For n = 0, 1, 2, 4, 8, 49, 98, 676, 1352, 9409, 18818, 131044, 262088, 1825201, 3650402, ... a(n) is a square.

Crossrefs

Cf. A000290 (n^2), A010762 (floor(n/2)*floor(n/3)), A093353 (n*floor(n/2)), A213033 (n*floor(n/2)*floor(n/3)), A233035 (n*floor(n/4)).
Cf. A002264 (floor(n/3)).

Programs

  • Magma
    [n*Floor(n/3): n in [0..60]];
    
  • Mathematica
    Table[n Floor[n/3], {n, 0, 60}]
  • PARI
    a(n)=n\3*n \\ Charles R Greathouse IV, Oct 07 2015
  • Sage
    [n*floor(n/3) for n in (0..60)];
    

Formula

G.f.: x^3*(3 + x + x^2 + x^3)/((1 - x)^3*(1 + x + x^2)^2).
a(3m) = A033428(m), a(3m+1) = A049451(m), a(3m+2) = A045944(m).
Sum_{n>=3} (-1)^(n+1)/a(n) = 9/4 + Pi^2/36 - Pi/(2*sqrt(3)) - 2*log(2). - Amiram Eldar, Mar 30 2023

A233036 The maximum number of I-tetrominoes that can be packed into an n X n array of squares when rotation is allowed.

Original entry on oeis.org

0, 0, 0, 4, 6, 8, 12, 16, 20, 24, 30, 36, 42, 48, 56, 64, 72, 80, 90, 100, 110, 120, 132, 144, 156, 168, 182, 196, 210, 224, 240, 256, 272, 288, 306, 324, 342, 360, 380, 400, 420, 440, 462, 484, 506, 528, 552, 576, 600, 624, 650, 676, 702, 728, 756, 784, 812, 840, 870, 900, 930, 960, 992, 1024, 1056
Offset: 1

Views

Author

Kival Ngaokrajang, Dec 03 2013

Keywords

Comments

By de Bruijn's theorem (see the de Bruijn link), an m X n rectangle can't be tiled with I tetrominoes unless m or n is divisible by 4. - Robert Israel, Oct 15 2015

Crossrefs

Cf. A233035.

Programs

  • Maple
    0$3, seq(op([4*k^2, 2*k*(2*k+1),4*k*(k+1),(2*k+1)*(2*k+2)]),k=1..20);# Robert Israel, Oct 15 2015
  • Mathematica
    CoefficientList[Series[2 x^3/((1 + x) (1 + x^2) (1 - x)^3) - 2 x^3, {x, 0, 100}], x] (* Vincenzo Librandi, Oct 15 2015 *)
    LinearRecurrence[{2,-1,0,1,-2,1},{0,0,0,4,6,8,12,16,20},70] (* Harvey P. Dale, Dec 16 2018 *)

Formula

From Robert Israel, Oct 15 2015: (Start)
a(4*k) = 4*k^2.
a(2*k+1) = k*(k+1) for k >= 2.
a(4*k+2) = 4*k*(k+1).
G.f.: 2*x^3/((1 + x)*(1 + x^2)*(1 - x)^3) - 2*x^3. (End)
Apparently a(n) = A182568(n+2) for n > 3. - Georg Fischer, Oct 14 2018

Extensions

Corrected by Robert Israel, Oct 15 2015

A233735 G.f.: x^3*(x^21 - x^20 - x^11 + x^10 + x^9 - x^8 + x^6 - x^5 + x^3 + x^2 - x + 1) / ((1-x^5) * (1-x)^2).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 6, 8, 10, 13, 16, 20, 25, 29, 34, 39, 45, 52, 58, 65, 72, 80, 88, 96, 105, 114, 124, 134, 144, 155, 166, 178, 190, 202, 215, 228, 242, 256, 270, 285, 300, 316, 332, 348, 365, 382, 400, 418, 436, 455, 474, 494, 514, 534
Offset: 0

Views

Author

Kival Ngaokrajang, Dec 15 2013

Keywords

Comments

The second differences repeat with period 1,0,1,0,0 for n >= 20.
a(n) is a lower bound on A085577(n-2). The Ngaokrajang link shows arrangements of a(n) Greek crosses in an n X n grid. Note that a(11)=16, whereas A085577(9)=17, so the bound is not always tight. - N. J. A. Sloane, Apr 19 2015

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^3*(x^21 - x^20 - x^11 + x^10 + x^9 - x^8 + x^6 - x^5 + x^3 +x^2 - x + 1)/((1 - x^5)*(1 - x)^2), {x, 0, 50}], x] (* G. C. Greubel, Jan 08 2018 *)
  • PARI
    x='x+O('x^50); Vec(x^3*(x^21 - x^20 - x^11 + x^10 + x^9 - x^8 + x^6 - x^5 + x^3 +x^2 - x + 1)/((1 - x^5)*(1 - x)^2)) \\ G. C. Greubel, Jan 08 2018

Extensions

Entry revised by N. J. A. Sloane, Apr 19 2015. The new definition is a g.f. found by Ralf Stephan on Dec 17 2013. The old definition was wrong.

A365686 Numbers k such that there exists a pair of integers (m,h) where 1 <= m < floor(sqrt(k)/2) <= h that satisfy Sum_{j=0..m} (k-j)^2 = Sum_{i=1..m} (h+i)^2.

Original entry on oeis.org

4, 12, 21, 24, 40, 60, 84, 110, 112, 120, 144, 180, 220, 264, 312, 315, 364, 420, 480, 544, 612, 684, 697, 760, 820, 840, 924, 1012, 1080, 1104, 1200, 1265, 1300, 1404, 1512, 1624, 1740, 1860, 1984, 2106, 2112, 2244, 2380, 2520, 2664, 2812, 2964, 3120, 3255
Offset: 1

Views

Author

DarĂ­o Clavijo, Sep 15 2023

Keywords

Comments

The sums are of m+1 consecutive squares ending at k^2, and of m consecutive squares starting somewhere at or beyond (k+1)^2.
If k is a term and h = k then k is in A046092.
All terms are composite numbers.
Also k is a term if there exists a pair of integers (m, h) such that 1 <= m < floor(sqrt(k)/2) <= h and that satisfy k*(m+1)*(k-m)-m*h*(h+m+1)=0.

Examples

			k=24 is a term because 21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2 with m=3 and h=24.
k=110 is a term because 108^2 + 109^2 + 110^2 = 133^2 + 134^2, with m=2 and h=132.
		

Crossrefs

Programs

  • PARI
    isok(k) = for (i=1, k-1, my(s1 = sum(j=k-i, k, j^2)); for (m=k+1, oo, my(s2 = sum(j=0, i-1, (m+j)^2)); if (s2 == s1, return(1)); if (s2 > s1, break););); \\ Michel Marcus, Sep 27 2023
  • Python
    from sympy import isprime
    from sympy.ntheory.primetest import is_square
    from sympy.core.intfunc import isqrt
    A002378 = lambda n: n * (n + 1)
    A046092 = lambda n: A002378(n) << 1
    isA046092 = lambda n: (n & 1 == 0) and is_square((n << 1) + 1)
    def isok(k):
        if isprime(k): return False
        if isA046092(k): return True
        k2 = k * k
        for m in range(1, (isqrt(k) >> 1) + 1):
            h, m2, m_2 = k+1, m * m, m << 1
            S = k2 - k * A046092(m)
            while S > 0:
                S -= m2 + (h * m_2)
                h += 1
                if S == 0: return True
    print([k for k in range(1, 3256) if isok(k)])
    

Formula

k if Sum_{j=0..m} (k-j)^2 = Sum_{i=1..m} (h+i)^2 where 1 <= m < floor(sqrt(k)/2) <= h.
Showing 1-4 of 4 results.