A233217
T(n,k)=Number of nXk 0..5 arrays with no element x(i,j) adjacent to value 5-x(i,j) horizontally or antidiagonally, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order.
Original entry on oeis.org
1, 2, 3, 6, 23, 11, 23, 376, 452, 48, 99, 7222, 35446, 10313, 236, 452, 147019, 3054973, 3638416, 249062, 1248, 2136, 3054973, 268289572, 1340889772, 380283286, 6147803, 6896, 10313, 63927526, 23644611625, 496475792293, 591021089923, 39892988056
Offset: 1
Some solutions for n=3 k=4
..0..0..0..1....0..0..0..1....0..0..0..1....0..0..0..1....0..0..0..1
..2..1..2..1....0..1..5..1....0..2..2..1....2..0..0..0....0..2..1..3
..2..0..2..2....1..5..1..0....4..0..1..0....0..1..3..5....2..0..0..2
A233239
T(n,k)=Number of nXk 0..5 arrays with no element x(i,j) adjacent to value 5-x(i,j) horizontally, diagonally or antidiagonally, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order.
Original entry on oeis.org
1, 2, 3, 6, 19, 11, 23, 271, 313, 48, 99, 4504, 18744, 6046, 236, 452, 79201, 1212549, 1409129, 123352, 1248, 2136, 1419889, 79794804, 338046654, 107709266, 2565169, 6896, 10313, 25622596, 5267525102, 81477098771, 94601758339, 8259321811
Offset: 1
Some solutions for n=3 k=4
..0..1..0..2....0..0..1..2....0..1..0..2....0..0..1..0....0..0..1..2
..3..3..0..0....4..0..0..3....1..0..0..0....2..0..2..1....2..0..1..5
..0..3..3..4....3..0..4..2....2..2..0..2....2..1..2..2....1..5..3..5
A233256
T(n,k)=Number of nXk 0..5 arrays with no element x(i,j) adjacent to itself or value 5-x(i,j) horizontally or antidiagonally, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order (unlabelled 6-colorings with no clashing color pairs).
Original entry on oeis.org
1, 1, 3, 3, 10, 11, 10, 104, 136, 48, 36, 1184, 4672, 2080, 236, 136, 13952, 166400, 221696, 32896, 1248, 528, 166400, 6049792, 23896064, 10620928, 524800, 6896, 2080, 1992704, 220626944, 2647261184, 3439984640, 509640704, 8390656, 39168, 8256
Offset: 1
Some solutions for n=3 k=4
..0..1..0..2....0..1..0..2....0..1..2..4....0..1..0..2....0..1..2..4
..5..3..5..2....2..1..0..4....3..4..2..4....3..4..0..4....2..0..3..1
..4..3..1..5....5..2..0..3....3..1..5..4....3..1..5..1....4..0..2..0
A233174
T(n,k)=Number of nXk 0..5 arrays with no element x(i,j) adjacent to itself or value 5-x(i,j) horizontally, diagonally or antidiagonally, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order (unlabelled 6-colorings with no clashing color pairs).
Original entry on oeis.org
1, 1, 3, 3, 8, 11, 10, 80, 80, 48, 36, 800, 2688, 896, 236, 136, 8576, 78336, 96256, 10496, 1248, 528, 92672, 2469888, 7938048, 3497984, 124928, 6896, 2080, 1009664, 76447744, 736362496, 808583168, 127533056, 1495040, 39168, 8256, 11018240
Offset: 1
Some solutions for n=3 k=4
..0..1..0..2....0..1..2..5....0..1..2..4....0..1..5..2....0..1..2..1
..2..4..0..1....0..1..2..0....0..4..3..1....5..3..0..3....0..1..5..1
..5..1..5..4....5..1..3..5....3..4..5..4....5..4..5..3....0..4..2..4
A233202
T(n,k)=Number of nXk 0..7 arrays with no element x(i,j) adjacent to itself or value 7-x(i,j) horizontally, antidiagonally or vertically, top left element zero, and 1 appearing before 2 3 4 5 and 6, 2 appearing before 3 4 and 5, and 3 appearing before 4 in row major order (unlabelled 8-colorings with no clashing color pairs).
Original entry on oeis.org
1, 1, 1, 3, 3, 3, 11, 36, 36, 11, 48, 528, 1440, 528, 48, 236, 8256, 62720, 62720, 8256, 236, 1248, 131328, 2779136, 7802880, 2779136, 131328, 1248, 6896, 2098176, 123551744, 981532672, 981532672, 123551744, 2098176, 6896, 39168, 33558528
Offset: 1
Some solutions for n=3 k=4
..0..1..2..7....0..1..2..0....0..1..2..3....0..1..2..7....0..1..7..2
..3..7..4..5....5..3..6..3....5..4..6..5....5..7..3..6....5..3..6..4
..6..5..7..6....6..7..2..6....6..2..3..6....3..5..0..3....6..7..2..6
A261275
Number of set partitions C_t(n) of {1,2,...,t} into at most n parts, with an even number of elements in each part distinguished by marks; triangle C_t(n), t>=0, 0<=n<=t, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 4, 10, 11, 0, 8, 36, 48, 49, 0, 16, 136, 236, 256, 257, 0, 32, 528, 1248, 1508, 1538, 1539, 0, 64, 2080, 6896, 9696, 10256, 10298, 10299, 0, 128, 8256, 39168, 66384, 74784, 75848, 75904, 75905, 0, 256, 32896, 226496, 475136, 586352, 607520, 609368, 609440, 609441
Offset: 0
Triangle starts:
1;
0, 1;
0, 2, 3;
0, 4, 10, 11;
0, 8, 36, 48, 49;
0, 16, 136, 236, 256, 257;
0, 32, 528, 1248, 1508, 1538, 1539;
0, 64, 2080, 6896, 9696, 10256, 10298, 10299;
...
-
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(
binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))
end:
T:= n-> (p-> seq(add(coeff(p, x, j), j=0..i), i=0..n))(b(n$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Aug 13 2015
-
CC[t_, n_] := Sum[2^(t - m)*StirlingS2[t, m], {m, 0, n}];
Table[CC[t, n], {t, 0, 12}, {n, 0, t}] // Flatten
(* Second program: *)
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[x^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!*Sum[Binomial[i, 2*k], {k, 0, i/2}]^j*b[n - i*j, i - 1], {j, 0, n/i}]]];
T[n_] := Function[p, Table[Sum[Coefficient[p, x, j], {j, 0, i}], {i, 0, n} ] ][b[n, n]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
Showing 1-6 of 6 results.
Comments