A233468 The digital root of prime(n+1) minus the digital root of prime(n).
1, 2, 2, -5, 2, 4, -7, 4, -3, 2, -3, 4, 2, -5, 6, -3, 2, -3, 4, -7, 6, -5, 6, -1, -5, 2, 4, -7, 4, -4, 4, -3, 2, 1, 2, -3, -3, 4, -3, 6, -7, 1, 2, 4, -7, 3, 3, -5, 2, 4, -3, 2, 1, -3, -3, 6, -7, 6, -5, 2, 1, -4, 4, 2, -5, 5, -3, 1, 2, -5, 6
Offset: 1
Examples
For n = 1, (prime(2) mod 9) - (prime(1) mod 9) = 3 (mod 9) - 2 (mod 9) = 3-2 = 1. For n = 2, (prime(3) mod 9) - (prime(2) mod 9) = 5 (mod 9) - 3 (mod 9) = 5-3 = 2. For n = 3, (prime(4) mod 9) - (prime(3) mod 9) = 7 (mod 9) - 5 (mod 9) = 7-5 = 2. For n = 4, (prime(5) mod 9) - (prime(4) mod 9) = 11 (mod 9) - 7 (mod 9) = 2-7 = -5.
Links
- Conner L. Delahanty, Table of n, a(n) for n = 1..20000
Programs
-
Maple
A233468:=n->(ithprime(n+1) mod 9) - (ithprime(n) mod 9); seq(A233468(n), n=1..100); # Wesley Ivan Hurt, Apr 19 2014
-
Mathematica
Table[Mod[Prime[n + 1], 9] - Mod[Prime[n], 9], {n, 100}] (* Wesley Ivan Hurt, Apr 19 2014 *)
-
Python
dd=[] def prim(end): num=3 primes=[2, 3] while (len(primes)<=end): num+=1 prime=False length=len(primes) for y in range(0, length): if (num % primes[y]!=0): prime=True else: prime=False break if (prime): primes.append(num) for x in range(len(primes)-1): dd.append((primes[x+1]%9) - (primes[x]%9)) return dd
Formula
a(n) = (prime(n+1) mod 9) - (prime(n) mod 9).
a(n) = prime(n + 1) - 9*floor((prime(n + 1) - 1)/9) - prime(n) + 9*floor((prime(n) - 1)/9). - Wesley Ivan Hurt, Apr 19 2014