cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233468 The digital root of prime(n+1) minus the digital root of prime(n).

Original entry on oeis.org

1, 2, 2, -5, 2, 4, -7, 4, -3, 2, -3, 4, 2, -5, 6, -3, 2, -3, 4, -7, 6, -5, 6, -1, -5, 2, 4, -7, 4, -4, 4, -3, 2, 1, 2, -3, -3, 4, -3, 6, -7, 1, 2, 4, -7, 3, 3, -5, 2, 4, -3, 2, 1, -3, -3, 6, -7, 6, -5, 2, 1, -4, 4, 2, -5, 5, -3, 1, 2, -5, 6
Offset: 1

Views

Author

Conner L. Delahanty, Apr 18 2014

Keywords

Examples

			For n = 1, (prime(2) mod 9) - (prime(1) mod 9) =  3 (mod 9) - 2 (mod 9) = 3-2 = 1.
For n = 2, (prime(3) mod 9) - (prime(2) mod 9) =  5 (mod 9) - 3 (mod 9) = 5-3 = 2.
For n = 3, (prime(4) mod 9) - (prime(3) mod 9) =  7 (mod 9) - 5 (mod 9) = 7-5 = 2.
For n = 4, (prime(5) mod 9) - (prime(4) mod 9) = 11 (mod 9) - 7 (mod 9) = 2-7 = -5.
		

Crossrefs

Programs

  • Maple
    A233468:=n->(ithprime(n+1) mod 9) - (ithprime(n) mod 9); seq(A233468(n), n=1..100); # Wesley Ivan Hurt, Apr 19 2014
  • Mathematica
    Table[Mod[Prime[n + 1], 9] - Mod[Prime[n], 9], {n, 100}] (* Wesley Ivan Hurt, Apr 19 2014 *)
  • Python
    dd=[]
    def prim(end):
        num=3
        primes=[2, 3]
        while (len(primes)<=end):
            num+=1
            prime=False
            length=len(primes)
            for y in range(0, length):
                if (num % primes[y]!=0):
                    prime=True
                else:
                    prime=False
                    break
            if (prime):
                primes.append(num)
        for x in range(len(primes)-1):
            dd.append((primes[x+1]%9) - (primes[x]%9))
        return dd

Formula

a(n) = (prime(n+1) mod 9) - (prime(n) mod 9).
a(n) = prime(n + 1) - 9*floor((prime(n + 1) - 1)/9) - prime(n) + 9*floor((prime(n) - 1)/9). - Wesley Ivan Hurt, Apr 19 2014
a(n) = A010888(A000040(n+1)) - A010888(A000040(n)). - Michel Marcus, Apr 19 2014