A233700 Decimal expansion of 1/sin(arctan(1/t)) or t/sin(arctan(t)) where t = 2*Pi: hypotenuse for a right triangle of equal area to a disk.
6, 3, 6, 2, 2, 6, 5, 1, 3, 1, 5, 6, 7, 3, 2, 8, 3, 9, 3, 6, 9, 1, 2, 4, 5, 4, 4, 0, 5, 8, 6, 8, 0, 4, 4, 1, 0, 6, 9, 9, 7, 1, 4, 9, 8, 5, 1, 3, 8, 9, 8, 9, 6, 8, 6, 5, 8, 2, 0, 4, 1, 6, 1, 7, 0, 4, 5, 9, 9, 8, 5, 8, 7, 3, 3, 1, 7, 8, 4, 8, 5, 4, 1, 3, 4, 5, 5, 0, 8, 7, 7, 1, 3
Offset: 1
Examples
6.362265131567328393691245440586804410699714985138989686582041617045998587331...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Wikipedia, Area of a disk: Triangle method
Programs
-
Julia
using Nemo RR = RealField(310) t = const_pi(RR) + const_pi(RR) t/sin(atan(t)) |> println # Peter Luschny, Mar 13 2018
-
Magma
C := ComplexField(); Sqrt(1 + 4*Pi(C)^2) // G. C. Greubel, Jan 08 2018
-
Magma
R:=RealField(110); SetDefaultRealField(R); n:=Sqrt(1+4*Pi(R)^2); Reverse(Intseq(Floor(10^108*n))); // Bruno Berselli, Mar 13 2018
-
Mathematica
RealDigits[(2*Pi)/Sin[ArcTan[2*Pi]],10,120][[1]] (* Harvey P. Dale, Jul 12 2014 *) RealDigits[ Sqrt[1 + 4*Pi^2], 10, 111][[1]] (* Robert G. Wilson v, Mar 12 2015 *)
-
PARI
sqrt(1+(2*Pi)^2)
Comments