cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234297 Squares t^2 = (p+q+r)/3 which are the arithmetic mean of three consecutive primes such that p < t^2 < q < r.

Original entry on oeis.org

47961, 123201, 131769, 826281, 870489, 2486929, 3294225, 5239521, 5294601, 5774409, 6215049, 6335289, 6848689, 9308601, 10634121, 16072081, 17164449, 17732521, 18896409, 19298449, 22667121, 24413481, 25391521, 25836889, 30769209, 32569849, 33535681
Offset: 1

Views

Author

K. D. Bajpai, Dec 22 2013

Keywords

Examples

			47961 is in the sequence because 47961 = 219^2 = (47951+47963+47969)/3, the arithmetic mean of three consecutive primes.
131769 is in the sequence because 131769 = 363^2 = (131759+131771+131777)/3, the arithmetic mean of three consecutive primes.
		

Crossrefs

Cf. A000290 (squares: a(n) = n^2).
Cf. A062703 (squares: sum of two consecutive primes).
Cf. A069495 (squares: arithmetic mean of two consecutive primes).
Cf. A234240 (cubes: arithmetic mean of three consecutive primes).

Programs

  • Maple
    with(numtheory):KD := proc() local a,b,d,e,f; a:=n^2; b:=prevprime(a); d:=nextprime(a); e:=nextprime(d); f:=(b+d+e)/3; if a=f then RETURN (a); fi; end: seq(KD(), n=2..10000);
  • Mathematica
    amQ[{a_,b_,c_}]:=Module[{m=Mean[{a,b,c}]},IntegerQ[Sqrt[m]]&&aHarvey P. Dale, Mar 14 2014 *)
  • PARI
    list(lim)=my(v=List(),p=2,q=3,t); forprime(r=5, nextprime(nextprime(lim+1)+1), t=(p+q+r)/3; if(denominator(t)==1 && issquare(t) && t < q, listput(v, t)); p=q;q=r); Vec(v) \\ Charles R Greathouse IV, Jan 03 2014

Extensions

Definition corrected by Michel Marcus and Charles R Greathouse IV, Jan 03 2014