cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234469 Primes which are the arithmetic mean of the cubes of four consecutive primes.

Original entry on oeis.org

2077681, 16244203, 904456921, 2500135411, 2762662109, 10064833601, 65794585811, 122098559279, 144790176847, 245198071093, 268215631223, 2038246966633, 2782403547799, 3022844332973, 3593531892947
Offset: 1

Views

Author

K. D. Bajpai, Dec 26 2013

Keywords

Examples

			2077681 is in the sequence because (113^3 + 127^3 + 131^3 + 137^3)/4 = 2077681 which is prime.
16244203 is in the sequence because (241^3 + 251^3 + 257^3 + 263^3)/4 = 16244203 which is prime.
		

Crossrefs

Cf. A084951: primes of the form (prime(k)^2 + prime(k+1)^2 + prime(k+2)^2)/3.
Cf. A093343: primes of the form (prime(k)^2 + prime(k+1)^2)/2.
Cf. A234358: cubes which are the arithmetic mean of four consecutive primes.

Programs

  • Maple
    KD := proc() local a,b,d,e,g; a:=ithprime(n); b:=ithprime(n+1); d:=ithprime(n+2); e:=ithprime(n+3); g:=(a^3+b^3+d^3+e^3)/4; if g=floor(g) and isprime(g) then RETURN (g); fi; end: seq(KD(), n=1..5000);
  • Mathematica
    Select[Mean/@Partition[Prime[Range[2000]]^3,4,1],PrimeQ] (* Harvey P. Dale, Oct 12 2020 *)