cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234574 T(n,k) is the number of size k ordered submultisets of the regular multiset {1_1,1_2,...,1_(n-1),1_n, ... ,i_1,i_2,...,i_(n-1),i_n, ... ,n_1,n_2,...,n_(n-1),n_n} (which contains n copies of i for 1 <= i <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 6, 6, 1, 3, 9, 27, 78, 210, 510, 1050, 1680, 1680, 1, 4, 16, 64, 256, 1020, 4020, 15540, 58380, 210840, 722400, 2310000, 6745200, 17417400, 37837800, 63063000, 63063000, 1, 5, 25, 125, 625, 3125, 15620, 77980, 388220, 1923180, 9454620
Offset: 0

Views

Author

Thomas Wieder, Dec 29 2013

Keywords

Comments

A181567 gives the case for unordered submultisets.

Examples

			For n=2 we have the regular multiset L = [1,1,2,2].
We get the following ordered submultisets from L:
For k=0 1 multiset: []
For k=1 2 multisets: [1], [2]
For k=2 4 multisets: [1,1], [1,2], [2,1], [2,2]
For k=3 6 multisets: [1,1,2], [1,2,1], [2,1,1], [1,2,2], [2,1,2], [2,2,1]
For k=4 6 multisets: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1], [2,2,1,1].
Triangle begins with:
  1;
  1, 1;
  1, 2, 4, 6, 6;
  1, 3, 9, 27, 78, 210, 510, 1050, 1680, 1680;
  1, 4, 16, 64, 256, 1020, 4020, 15540, 58380, 210840, 722400, 2310000, 6745200, 17417400, 37837800, 63063000, 63063000;
  ...
		

Crossrefs

Cf. A181567.
Row sums give A274762.

Programs

  • Maple
    # first Maple program: see link above
    # second Maple program:
    b:= proc(n, k, i) option remember; `if`(k=0, 1,
         `if`(i<1, 0, add(b(n, k-j, i-1)/j!, j=0..n)))
        end:
    T:= (n, k)-> b(n, k, n)*k!:
    seq(seq(T(n, k), k=0..n^2), n=0..5); # Alois P. Heinz, Jul 04 2016

Extensions

More terms from Alois P. Heinz, Jul 04 2016