cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234592 Number of binary words of length n which have no 0^b 1 1 0^a 1 0 1 0^b - matches, where a=b=2.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2047, 4092, 8180, 16352, 32688, 65344, 130624, 261120, 521984, 1043457, 2085893, 4169745, 8335410, 16662664, 33309024, 66585456, 133105760, 266081280, 531902207, 1063283962, 2125527529, 4248975286, 8493793063
Offset: 0

Views

Author

N. J. A. Sloane, Jan 01 2014

Keywords

Programs

  • GAP
    a:=[1,2,4,8,16,32,64,128,256,512,1024];; for n in [12..40] do a[n]:=2*a[n-1]-a[n-9]+a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 14 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x^9+x^10)/(1-2*x+x^9-x^10-x^11) )); // G. C. Greubel, Sep 14 2019
    
  • Maple
    a:= n-> coeff(series(-(x^10+x^9+1)/(x^11+x^10-x^9+2*x-1), x, n+1), x, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 08 2014
  • Mathematica
    a[n_ /; n<=10]:= 2^n; a[n_]:=a[n] =2*a[n-1] -a[n-9] +a[n-10] +a[n-11]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 18 2014 *)
    LinearRecurrence[{2,0,0,0,0,0,0,0,-1,1,1}, {1,2,4,8,16,32,64,128,256, 512,1024}, 40] (* Harvey P. Dale, May 17 2018 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+x^9+x^10)/(1-2*x+x^9-x^10-x^11)) \\ G. C. Greubel, Sep 14 2019
    
  • Sage
    def A234592_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^9+x^10)/(1-2*x+x^9-x^10-x^11)).list()
    A234592_list(40) # G. C. Greubel, Sep 14 2019
    

Formula

G.f.: (1+x^9+x^10)/(1-2*x+x^9-x^10-x^11). - Alois P. Heinz, Jan 08 2014

Extensions

a(17)-a(33) from Alois P. Heinz, Jan 08 2014