cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234872 a(n) = 6*binomial(11*n+6,n)/(11*n+6).

Original entry on oeis.org

1, 6, 81, 1406, 27636, 585162, 13019909, 300138696, 7105216833, 171717015470, 4219267597578, 105085831400550, 2647012241261856, 67316157557021436, 1726006087183713615, 44570883175043934384, 1158139943222389790715
Offset: 0

Views

Author

Tim Fulford, Jan 01 2014

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=6.

Crossrefs

Programs

  • Magma
    [6*Binomial(11*n+6,n)/(11*n+6): n in [0..30]]; // Vincenzo Librandi, Jan 01 2014
  • Mathematica
    Table[6 Binomial[11 n + 6, n]/(11 n + 6), {n, 0, 40}] (* Vincenzo Librandi, Jan 01 2014 *)
  • PARI
    a(n) = 6*binomial(11*n+6,n)/(11*n+6);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/6))^6+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, with p=11, r=6.
a(n) ~ 3*4^(-3-5*n)*5^(-13/2-10*n)*11^(11/2+11*n)/(n^(3/2)*sqrt(Pi)). - Stefano Spezia, Aug 23 2025