A234872 a(n) = 6*binomial(11*n+6,n)/(11*n+6).
1, 6, 81, 1406, 27636, 585162, 13019909, 300138696, 7105216833, 171717015470, 4219267597578, 105085831400550, 2647012241261856, 67316157557021436, 1726006087183713615, 44570883175043934384, 1158139943222389790715
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
Programs
-
Magma
[6*Binomial(11*n+6,n)/(11*n+6): n in [0..30]]; // Vincenzo Librandi, Jan 01 2014
-
Mathematica
Table[6 Binomial[11 n + 6, n]/(11 n + 6), {n, 0, 40}] (* Vincenzo Librandi, Jan 01 2014 *)
-
PARI
a(n) = 6*binomial(11*n+6,n)/(11*n+6);
-
PARI
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/6))^6+x*O(x^n)); polcoeff(B, n)}
Formula
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, with p=11, r=6.
a(n) ~ 3*4^(-3-5*n)*5^(-13/2-10*n)*11^(11/2+11*n)/(n^(3/2)*sqrt(Pi)). - Stefano Spezia, Aug 23 2025
Comments