A234937 Triangle read by rows of coefficients of polynomials generated by the Han/Nekrasov-Okounkov formula.
1, 1, -1, 4, -5, 1, 18, -29, 12, -1, 120, -218, 119, -22, 1, 840, -1814, 1285, -345, 35, -1, 7920, -18144, 14674, -5205, 805, -51, 1, 75600, -196356, 185080, -79219, 16450, -1624, 70, -1, 887040, -2427312, 2515036, -1258628, 324569, -43568, 2954, -92, 1
Offset: 0
Examples
The coefficient of q^3 in the indeterminate power is (1/6) (18-29b+12b^2-b^3).
Links
- Seiichi Manyama, Rows n = 0..100, flattened
- G.-N. Han, An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths, arXiv:0804.1849 [math.CO], 2008.
- W. J. Keith, Polynomial analogues of Ramanujan congruences for Han's hooklength formula, arXiv:1109.1236 [math.CO], 2011-2012; Acta Arith. 160 (2013), 303-315.
Crossrefs
Row entries sum to 0.
A210590 is the unsigned version.
Starting from row 0: final entry of row n, (-1)^n (A033999).
From row 1: next-to-last entry of row n, (-1)^(n-1) * n(3n-1)/2 (signed version of A000326).
First entry of row n, n! * p(n) (A053529).
Second entry of row n, -1 * n! * (sum of reciprocals of all parts in partitions of n) (negatives of A057623).
(Sum of absolute values of row entries)/n!: A000712.
Evaluations at various powers of b, divided by n!, enumerate multipartitions or powers of the eta function. Some special cases that appear in the OEIS:
b=0: A000041, the partition numbers,
b=2: A010815, from Euler's Pentagonal Number Theorem,
b=-1: A000712, partitions into 2 colors,
b=-11: A005758, reciprocal of the square root of the tau function,
b=-23: A006922, reciprocal of the tau function,
b=13: A000735, square root of the tau function,
b=25: A000594, Ramanujan's tau function.
Programs
-
Mathematica
nn=10; Clear[b]; PolyTable = Table[0, {n, 1, nn}]; PolyTable[[1]]=1-b; For[n = 2, n <= nn, n++, PolyTable[[n]] = Simplify[(((n - 1)!)*(b - 1))*(Sum[ PolyTable[[n - m]]*(-1*DivisorSigma[1, m]/((n - m)!)), {m, 1, n - 1}] + (-1*DivisorSigma[1, n]))]]; LongTable = Table[Table[ Which[k == 0, PartitionsP[n]*n!, k > 0, Coefficient[Expand[PolyTable[[n]]], b^k]], {k, 0, n}], {n, 1, nn}]; Flatten[PrependTo[LongTable,1]]
Formula
E.g.f.: Product_{k>0} (1-q^k)^(b-1).
Recurrence: With p_0(b) = 1, p_n(b) = (n-1)!*(b-1)*Sum_{m=1..n} -sigma(m)*p_{n-m}(b) / (n-m)!, sigma being the divisor function.
Comments