cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235136 a(n) = (2*n - 1) * a(n-2) for n>1, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 3, 5, 21, 45, 231, 585, 3465, 9945, 65835, 208845, 1514205, 5221125, 40883535, 151412625, 1267389585, 4996616625, 44358635475, 184874815125, 1729986783525, 7579867420125, 74389431691575, 341094033905625, 3496303289504025, 16713607661375625
Offset: 0

Views

Author

Michael Somos, Jan 03 2014

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + 5*x^3 + 21*x^4 + 45*x^5 + 231*x^6 + 585*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := 2^n If[ OddQ[n], 2 Pochhammer[ 1/4, (n + 1)/2], Pochhammer[ 3/4, n/2]]; (* Michael Somos, Jan 16 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (-2 Gamma[5/2] HermiteH[ -3/2, x] + (3 Gamma[5/4] + 2 Gamma[7/4]) Hypergeometric1F1[ 3/4, 1/2, x^2]) / (3 Gamma[5/4]), {x, 0, n}] // FullSimplify]; (* Michael Somos, Jan 16 2014 *)
    RecurrenceTable[{a[0]==a[1]==1, a[n]==(2 n - 1) a[n - 2]}, a, {n, 25}] (* Vincenzo Librandi, Aug 08 2018 *)
  • PARI
    {a(n) = if( n<0, (-1)^(-n\2) / a(-1-n), if( n<2, 1, (2*n - 1) * a(n-2)))};

Formula

Let b(n) = a(2*n - 2) / a(2*n + 1). Then b(-n) = b(n), 0 = b(n+1) * (b(n+1) + 2*b(n+2)) + b(n) * (2*b(n+1) - 5*b(n+2)) for all n in Z.
a(n-1) + a(n-2) = A196265(n) if n>1.
a(2*n) = A008545(n). a(2*n - 1) = A007696(n). a(n) = A007662(2*n - 1).
E.g.f. A(x) =: y satisfies 0 = y * 3 + y' * 2*x - y''.
0 = a(n)*(2*a(n+1) - a(n+3)) + a(n+1)*(a(n+2)) for all n in Z. - Michael Somos, Jan 24 2014
Let b(n) = a(n - 2) / a(n + 1). Then b(-n) = (-1)^n * b(n), 0 = b(n) * (b(n+1) - 4*b(n+3)) + b(n+2) * (2*b(n+1) + b(n+3)) for all n in Z. - Michael Somos, Sep 13 2014
a(n) ~ c * sqrt(Pi) * (2*n)^(n/2+1/4) / exp(n/2), where c = 2/Gamma(1/4) if n is odd, and 1/Gamma(3/4) if n is even. - Amiram Eldar, Sep 01 2025