A273751 Triangle of the natural numbers written by decreasing antidiagonals.
1, 2, 3, 4, 5, 7, 6, 8, 10, 13, 9, 11, 14, 17, 21, 12, 15, 18, 22, 26, 31, 16, 19, 23, 27, 32, 37, 43, 20, 24, 28, 33, 38, 44, 50, 57, 25, 29, 34, 39, 45, 51, 58, 65, 73, 30, 35, 40, 46, 52, 59, 66, 74, 82, 91, 36, 41, 47, 53, 60, 67, 75, 83, 92, 101, 111
Offset: 1
Keywords
Examples
1, 2, 3, 4, 5, 7, 6, 8, 10, 13, 9, 11, 14, 17, 21, 12, 15, 18, 22, 26, 31, 16, 19, 23, 27, 32, 37, 43, 20, etc.
Links
Crossrefs
Programs
-
Maple
A273751 := proc(n,k) option remember; if k = n then A002061(n) ; elif k > n or k < 0 then 0; elif k = n-1 then procname(n-1,k)+k ; else procname(n-1,k+1)+1 ; end if; end proc: # R. J. Mathar, Jun 13 2016
-
Mathematica
T[n_, k_] := T[n, k] = Which[k == n, n(n-1) + 1, k == n-1, (n-1)^2 + 1, k == 1, n + T[n-2, 1], 1 < k < n-1, T[n-1, k+1] + 1,True, 0]; Table[T[n, k], {n, 12}, {k, n}] // Flatten (* Jean-François Alcover, Jun 10 2016 *)
Formula
T(n, k) = (2 * (n+k)^2 + 7 + (-1)^(n-k)) / 8 - k. - Werner Schulte, Sep 27 2024
G.f.: x*y*(1 + x^4*y + x^2*(y - 1)*y + x^5*y^2 - x^3*y*(y + 2))/((1 - x)^3*(1 + x)*(1 - x*y)^3). - Stefano Spezia, Sep 28 2024
Comments