A235365 Smallest odd prime factor of 3^n + 1, for n > 1.
5, 7, 41, 61, 5, 547, 17, 7, 5, 67, 41, 398581, 5, 7, 21523361, 103, 5, 2851, 41, 7, 5, 23535794707, 17, 61, 5, 7, 41, 523, 5, 6883, 926510094425921, 7, 5, 61, 41, 18427, 5, 7, 17, 33703, 5, 82064241848634269407, 41, 7, 5, 16921, 76801, 547, 5, 7, 41, 78719947, 5, 61, 17, 7, 5, 3187, 41
Offset: 2
Keywords
Examples
3^2 + 1 = 10 = 2*5, so a(2) = 5.
References
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, NY 1992; see p. 731.
Links
- Table of n, a(n) for n = 2..768
- Philip Franklin, Problem 2927, Amer. Math. Monthly, 30 (1923), p. 81.
- Aaron Herschfeld, The equation 2^x - 3^y = d, Bull. Amer. Math. Soc., 42 (1936), 231-234.
- Hendrik Lenstra Harmonic Numbers, MSRI, 1998.
- J. J. O'Connor and E. F. Robertson, Levi ben Gerson, The MacTutor History of Mathematics archive, 2009.
- Ivars Peterson, Medieval Harmony, Math Trek, MAA, 2012.
- Wikipedia, Gersonides
Crossrefs
Programs
-
Magma
[PrimeDivisors(3^n +1)[2]: n in [2..60] ] ; // Vincenzo Librandi, Mar 16 2019
-
Mathematica
Table[FactorInteger[3^n + 1][[2, 1]], {n, 2, 50}]
Formula
a(2+4n) = 5 as 3^(2+4n) + 1 = (3^2)*(3^4)^n + 1 = 9*81^n + 1 = 9*(80+1)^n + 1 == 9 + 1 == 0 (mod 5).
a(3+6n) = 7 as 3^(3+6n) + 1 = (3^3)*(3^6)^n + 1 = 27*729^n + 1 = 27*(728+1)^n + 1 == 27 + 1 == 0 (mod 7), but 27 * 729^n + 1 == 2*(-1)^n + 1 !== 0 (mod 5).
Extensions
Terms to a(132) in b-file from Vincenzo Librandi, Mar 16 2019
a(133)-a(658) in b-file from Amiram Eldar, Feb 05 2020
a(659)-a(768) in b-file from Max Alekseyev, Apr 27 2022
Comments