cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235391 Duplicate of A129775.

Original entry on oeis.org

1, 1, 2, 6, 21, 78, 298, 1157, 4539, 17936, 71251, 284188, 1137076, 4561093, 18333337, 73816489, 297635750, 1201551286, 4855672249, 19640147061, 79501958895, 322037615290, 1305256267511, 5293166568270, 21475362822956, 87166344495561, 353933533606927
Offset: 0

Views

Author

Michael Somos, Jan 09 2014

Keywords

Examples

			G.f. = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 78*x^5 + 298*x^6 + 1157*x^7 + ...
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(2/( 2-x - x/Sqrt(1-4*x)))); // G. C. Greubel, Aug 07 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ 2 / (2 - x - x / Sqrt[1 - 4 x]), {x, 0, n}]
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 / (2 - x - x / sqrt(1 - 4*x + x * O(x^n))), n))}
    

Formula

G.f.: 1 / (1 - x / (1 - x / (1 - 2*x / (1 - x / (2 - 3*x / (1 - 2*x / (3 - 4*x / ... ))))))).
D-finite with recurrence: 0 = (4*n + 6) * a(n) - (17*n + 27) * a(n+1) + (24*n + 42) * a(n+2) - (9*n + 21) * a(n+3) + (n + 3) * a(n+4). - Sign flipped by R. J. Mathar, Feb 16 2020
0 = a(n) * (16*a(n+1) - 74*a(n+2) + 120*a(n+3) - 66*a(n+4) + 10*a(n+5))+ a(n+1) * (-62*a(n+1) + 361*a(n+2) - 480*a(n+3) + 265*a(n+4) - 41*a(n+5)) + a(n+2) * (-342*a(n+2) + 615*a(n+3) - 335*a(n+4) + 54*a(n+5)) + a(n+3) * (-90*a(n+3) + 75*a(n+4) - 15*a(n+5)) + a(n+4) * (-3*a(n+4) + a(n+5)).
a(n) = A129775(n) if n>0.
HANKEL transform is A000012.
INVERT transform is A073525.