A235595 Triangle read by rows: the triangle in A034855, with the n-th row normalized by dividing it by n.
1, 1, 2, 1, 9, 6, 1, 40, 60, 24, 1, 195, 560, 420, 120, 1, 1056, 5550, 6240, 3240, 720, 1, 6321, 59472, 94710, 68880, 27720, 5040, 1, 41392, 692440, 1527456, 1426320, 792960, 262080, 40320, 1, 293607, 8753040, 26418168, 30560544, 21213360, 9676800, 2721600, 362880, 1, 2237920, 119723130, 490458240, 691331760, 570810240, 323114400, 125798400, 30844800, 3628800
Offset: 2
Examples
Triangle begins: 1. 1, 2, 1, 9, 6, 1, 40, 60, 24, 1, 195, 560, 420, 120, 1, 1056, 5550, 6240, 3240, 720, 1, 6321, 59472, 94710, 68880, 27720, 5040, 1, 41392, 692440, 1527456,1426320, 792960, 262080, 40320, 1, 293607, 8753040, 26418168, 30560544, 21213360, 9676800, 2721600, 362880, ...
Links
- Alois P. Heinz, Rows n = 2..142, flattened
Programs
-
Maple
b:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add( binomial(n-1, j-1)*j*b(j-1, h-1)*b(n-j, h), j=1..n)) end: T:= (n,k)-> b(n-1, k-1)-b(n-1, k-2): seq(seq(T(n, d), d=1..n-1), n=2..12); # Alois P. Heinz, Aug 21 2017
-
Mathematica
gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; t[n_, k_] := (a[n, k] - a[n, k-1])/n; Table[t[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *)
-
Python
from sympy import binomial from sympy.core.cache import cacheit @cacheit def b(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*b(j - 1, h - 1)*b(n - j, h) for j in range(1, n + 1)]) def T(n, k): return b(n - 1, k - 1) - b(n - 1, k - 2) for n in range(2, 13): print([T(n, d) for d in range(1, n)]) # Indranil Ghosh, Aug 26 2017, after Maple code
Formula
A234953(n) = Sum_{k=1..n} k*T(n,k).
Comments