cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235595 Triangle read by rows: the triangle in A034855, with the n-th row normalized by dividing it by n.

Original entry on oeis.org

1, 1, 2, 1, 9, 6, 1, 40, 60, 24, 1, 195, 560, 420, 120, 1, 1056, 5550, 6240, 3240, 720, 1, 6321, 59472, 94710, 68880, 27720, 5040, 1, 41392, 692440, 1527456, 1426320, 792960, 262080, 40320, 1, 293607, 8753040, 26418168, 30560544, 21213360, 9676800, 2721600, 362880, 1, 2237920, 119723130, 490458240, 691331760, 570810240, 323114400, 125798400, 30844800, 3628800
Offset: 2

Views

Author

N. J. A. Sloane, Jan 14 2014

Keywords

Comments

T(n,k) is the number of forests of labeled rooted trees with n nodes and height k Cf. A210725. Equivalently, T(n,k) is the number of nilpotent partial functions on [n] with index k+1. - Geoffrey Critzer, Nov 26 2021

Examples

			Triangle begins:
1.
1, 2,
1, 9, 6,
1, 40, 60, 24,
1, 195, 560, 420, 120,
1, 1056, 5550, 6240, 3240, 720,
1, 6321, 59472, 94710, 68880, 27720, 5040,
1, 41392, 692440, 1527456,1426320, 792960, 262080, 40320,
1, 293607, 8753040, 26418168, 30560544, 21213360, 9676800, 2721600, 362880,
...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add(
          binomial(n-1, j-1)*j*b(j-1, h-1)*b(n-j, h), j=1..n))
        end:
    T:= (n,k)-> b(n-1, k-1)-b(n-1, k-2):
    seq(seq(T(n, d), d=1..n-1), n=2..12);  # Alois P. Heinz, Aug 21 2017
  • Mathematica
    gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; t[n_, k_] := (a[n, k] - a[n, k-1])/n; Table[t[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *)
  • Python
    from sympy import binomial
    from sympy.core.cache import cacheit
    @cacheit
    def b(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*b(j - 1, h - 1)*b(n - j, h) for j in range(1, n + 1)])
    def T(n, k): return b(n - 1, k - 1) - b(n - 1, k - 2)
    for n in range(2, 13): print([T(n, d) for d in  range(1, n)]) # Indranil Ghosh, Aug 26 2017, after Maple code

Formula

A234953(n) = Sum_{k=1..n} k*T(n,k).