cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235623 Numbers n for which in the prime power factorization of n!, the numbers of exponents 1 and >1 are equal.

Original entry on oeis.org

0, 1, 4, 7, 8, 9, 13, 19, 20, 21
Offset: 1

Views

Author

Vladimir Shevelev, Apr 20 2014

Keywords

Comments

Number n is in the sequence, if and only if pi(n) = 2*pi(n/2), where pi(x) is the number of primes<=x. Indeed, all primes from interval (n/2, n] appear in prime power factorization of n! with exponent 1, while all primes from interval (0, n/2] appear in n! with exponents >1. However, it follows from Ehrhart's link that, for n>=22, pi(n) < 2*pi(n/2). Therefore, a(9)=21 is the last term of the sequence.
m is in this sequence if and only if the number of prime divisors of [m/2]! equals the number of unitary prime divisors of m! - Peter Luschny, Apr 29 2014

Examples

			21! = 2^20*3^9*5^4*7^3*11*13*17*19. Here 4 primes with exponent 1 and 4 primes with exponents >1, so 21 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a := proc(n) factorset(n!); factorset(iquo(n,2)!);
    `if`(nops(%% minus %) = nops(%), n, NULL) end: seq(a(n), n=0..30); # Peter Luschny, Apr 28 2014
  • PARI
    isok(n) = {f = factor(n!); sum(i=1, #f~, f[i,2] == 1) == sum(i=1, #f~, f[i,2] > 1);} \\ Michel Marcus, Apr 20 2014