A235700 a(n+1) = a(n) + (a(n) mod 5), a(1)=1.
1, 2, 4, 8, 11, 12, 14, 18, 21, 22, 24, 28, 31, 32, 34, 38, 41, 42, 44, 48, 51, 52, 54, 58, 61, 62, 64, 68, 71, 72, 74, 78, 81, 82, 84, 88, 91, 92, 94, 98, 101, 102, 104, 108, 111, 112, 114, 118, 121, 122, 124, 128, 131, 132, 134, 138, 141, 142, 144, 148, 151, 152, 154, 158, 161, 162, 164, 168, 171, 172, 174, 178, 181, 182, 184, 188, 191
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Programs
-
Mathematica
NestList[#+Mod[#,5]&,1,80] (* Harvey P. Dale, Oct 20 2024 *)
-
PARI
is_A235700(n) = bittest(278,n%10) \\ 278=2^1+2^2+2^4+2^8
-
PARI
A235700 = n -> 2^((n-1)%4)+(n-1)\4*10
-
PARI
print1(a=1);for(i=1,99,print1(","a+=a%5))
-
PARI
Vec(x*(2*x^3+2*x^2+1)/((x-1)^2*(x^2+1)) + O(x^100)) \\ Colin Barker, Jan 16 2014
Formula
a(n) = 2^(n-1 mod 4) + 10*floor((n-1)/4).
From Colin Barker, Jan 16 2014: (Start)
a(n) = (-10+(1+2*i)*(-i)^n+(1-2*i)*i^n+10*n)/4 where i=sqrt(-1).
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4).
G.f.: x*(2*x^3+2*x^2+1) / ((x-1)^2*(x^2+1)). (End)
E.g.f.: (4 + 5*exp(x)*(x - 1) + cos(x) + 2*sin(x))/2. - Stefano Spezia, Feb 22 2025
Comments