A235702 Fixed points of A001175 (Pisano periods).
1, 24, 120, 600, 3000, 15000, 75000, 375000, 1875000, 9375000, 46875000, 234375000, 1171875000, 5859375000, 29296875000, 146484375000, 732421875000, 3662109375000, 18310546875000, 91552734375000, 457763671875000, 2288818359375000, 11444091796875000
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1430
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See pp. 2, 26.
- J. D. Fulton and W. L. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arithmetica, 16 (1969), 105-110.
- Wikipedia, Pisano period
- Index entries for linear recurrences with constant coefficients, signature (5).
Programs
-
Haskell
a235702 n = if n == 1 then 1 else 24 * 5 ^ (n - 2) a235702_list = 1 : iterate (* 5) 24
-
Mathematica
LinearRecurrence[{5},{1,24},30] (* or *) Join[{1},NestList[5#&,24,30]] (* Harvey P. Dale, May 07 2017 *)
-
PARI
Vec(-x*(19*x+1)/(5*x-1) + O(x^100)) \\ Colin Barker, Jan 16 2014
Formula
From Colin Barker, Jan 16 2014: (Start)
a(n) = 24*5^(n-2) for n > 1.
a(n) = 5*a(n-1) for n > 2.
G.f.: -x*(19*x+1) / (5*x-1). (End)
E.g.f.: (24*(exp(5*x) - 1) - 95*x)/25. - Stefano Spezia, Nov 09 2024